Modeling Stress Concentration Factors for Fatigue Design of KT-Joints Subjected to In-Plane Bending Loads Using Artificial Neural Networks

Article Preview

Abstract:

Stress concentration factor (SCF) is an important parameter for the fatigue design of offshore joints. There are many empirical equations for quick estimation of SCF in tubular joints, based on experimental and numerical investigations. However, most of these equations apply at the crown and saddle points only, even though the maximum SCF may not always occur at these points, resulting in overestimated fatigue life. As the maximum SCF location varies due to multiplanar loads, damage, or reinforcement of joints, its location and magnitude are critical for a realistic fatigue life estimation. However, conventional statistical tools cannot approximate the complex behavior of SCF around the brace axis. On the other hand, artificial neural networks (ANN) can efficiently approximate complex phenomena. This study uses ANN to develop empirical models for determining SCF around the weld toe of KT-joints subjected to in-plane bending (IPB) loads. Eighteen hundred and fifty-eight (1858) designs were simulated using finite element analyses to generate data for training the ANN. Two IPB load conditions were focused on, and empirical equations were proposed for SCF around the chord side of the central brace-chord interface. These equations approximate maximum SCF with less than 5% error. This methodology applies to other joints and load configurations also.

You might also be interested in these eBooks

Info:

Pages:

79-92

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xu, X., Shao, Y., Gao, X., Mohamed, H.S. (2022). Stress concentration factor (SCF) of CHS gap TT-joints reinforced with CFRP, Ocean Eng., 247(2), p.110722.

DOI: 10.1016/j.oceaneng.2022.110722

Google Scholar

[2] Bao, S., Wang, W., Li, X., Qi, S., Zhou, J. (2022). Experimental study of hot spot stress for three-planar tubular Y-joint: II. Combined loads, Thin-Walled Struct., 177(March), p.109416.

DOI: 10.1016/j.tws.2022.109416

Google Scholar

[3] Ahmadi, H., Lotfollahi-yaghin, M.A., Yong-bo, S. (2013). Experimental and Numerical Investigation of Geometric SCFs in Internally Ring-Stiffened Tubular KT-Joints of Offshore Structures, J. Persian Gulf, 43(1), p.7–8.

DOI: 10.1016/j.apor.2012.07.004

Google Scholar

[4] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., Rasul, A. (2023). Numerical investigation of crack mitigation in tubular KT-joints using composite reinforcement, 4th Int. Electron. Conf. Appl. Sci., , p.1–8.

DOI: 10.3390/ASEC2023-16290

Google Scholar

[5] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., Rasul, A. (2023). Rehabilitation Techniques for Offshore Tubular Joints, J. Mar. Sci. Eng., 11(2), p.461.

DOI: 10.3390/jmse11020461

Google Scholar

[6] Ahmadi, H., Lotfollahi-Yaghin, M.A., Aminfar, M.H. (2011). Geometrical effect on SCF distribution in uni-planar tubular DKT-joints under axial loads, J. Constr. Steel Res., 67(8), p.1282–91.

DOI: 10.1016/j.jcsr.2011.03.011

Google Scholar

[7] Zavvar, E., Hectors, K., De Waele, W. (2021). Stress concentration factors of multi-planar tubular KT-joints subjected to in-plane bending moments, Mar. Struct., 78(March), p.103000.

DOI: 10.1016/j.marstruc.2021.103000

Google Scholar

[8] Zavvar, E., Sadat Hosseini, A., Lotfollahi-Yaghin, M.A. (2021). Stress concentration factors in steel tubular KT-connections with FRP-Wrapping under bending moments, Structures, 33(7), p.4743–65.

DOI: 10.1016/j.istruc.2021.06.100

Google Scholar

[9] Pang, H.L.J., Lee, C.W. (1995). Three-dimensional finite element analysis of a tubular T-joint under combined axial and bending loading, Int. J. Fatigue, 17(5), p.313–20.

DOI: 10.1016/0142-1123(95)00019-P

Google Scholar

[10] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., Nouman, H. (2023). Empirical modeling of stress concentration factors using finite element analysis and artificial neural networks for the fatigue design of tubular KT-joints under combined loading, Fatigue Fract. Eng. Mater. Struct., 46(11), p.4333–49.

DOI: 10.1111/ffe.14122

Google Scholar

[11] Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., Hina, A. (2023). An Artificial Neural Network Model for the Stress Concentration Factors in KT-Joints Subjected to Axial Compressive Load, Mater. Sci. Forum, 1103(8), p.163–75.

DOI: 10.4028/p-ypo50i

Google Scholar

[12] Offshore Wimpey. (1990). New Static Strength Guidance for Tubular Joints in Steel Offshore Structures, Offshroe Technol. Rep. (OTH 89 308), , Doi: 195536-A001.

Google Scholar

[13] Lloyd's Register. (1991). Stress concentration factors for simple tubular joints, Lloyd's Regist. Shipp. Heal. Saf. Exec. - Offshore Technol. Rep. (OTH 91 354), , p.475–83.

Google Scholar

[14] ARSEM. (1987). Design guides for offshore structures - Welded tubular joints, vol. 1, Technip, Peris France.

Google Scholar

[15] Recommended Practice for Planning, D. and C.F.O.P.-W.S.D. (2014). API RP 2A WSD 22nd Edition, vol. 2014. UK.

Google Scholar

[16] Ahmadi, H. (2019). Probabilistic analysis of the DoB in axially-loaded tubular KT-joints of offshore structures, Appl. Ocean Res., 87(February), p.64–80.

DOI: 10.1016/j.apor.2019.03.018

Google Scholar

[17] Ahmadi, H., Ziyaei Nejad, A. (2016). Stress Concentration Factors in Uniplanar Tubular KT-Joints of Jacket Structures Subjected to In-Plane Bending Loads, Int. J. Marit. Technol. IJMT, 5, p.27–39.

DOI: 10.1016/j.tws.2015.02.011

Google Scholar

[18] Ahmadi, H., Ali Lotfollahi-Yaghin, M., Yong-Bo, S., Aminfar, M.H. (2012). Parametric study and formulation of outer-brace geometric stress concentration factors in internally ring-stiffened tubular KT-joints of offshore structures, Appl. Ocean Res., 38(7), p.74–91.

DOI: 10.1016/j.apor.2012.07.004

Google Scholar

[19] Ahmadi, H., Lotfollahi-Yaghin, M.A. (2015). Stress concentration due to in-plane bending (IPB) loads in ring-stiffened tubular KT-joints of offshore structures: Parametric study and design formulation, Appl. Ocean Res., 51(3), p.54–66.

DOI: 10.1016/j.apor.2015.02.009

Google Scholar

[20] N'Diaye, A., Hariri, S., Pluvinage, G., Azari, Z. (2009). Stress concentration factor analysis for welded, notched tubular T-joints under combined axial, bending and dynamic loading, Int. J. Fatigue, 31(2), p.367–74.

DOI: 10.1016/j.ijfatigue.2008.07.014

Google Scholar

[21] Efthymiou, M. (1988). Development of SCF formulae and generalised influence functions for use in fatigue analysis, Surrey, UK, UEG Offshore Research.

Google Scholar

[22] Ahmadi, H., Lotfollahi-Yaghin, M.A., Aminfar, M.H. (2011). Effect of stress concentration factors on the structural integrity assessment of multi-planar offshore tubular DKT-joints based on the fracture mechanics fatigue reliability approach, Ocean Eng., 38(17), p.1883–93.

DOI: 10.1016/j.oceaneng.2011.08.004

Google Scholar

[23] Ahmadi, H., Zavvar, E. (2020). Degree of bending (DoB) in offshore tubular KT-joints under the axial, in-plane bending (IPB), and out-of-plane bending (OPB) loads, Appl. Ocean Res., 95(10), p.1187–206.

DOI: 10.1016/j.apor.2019.102015

Google Scholar

[24] Gao, J., Duan, M., Yuan, Y. (2022). Degree of bending (DoB) in jack-up unit tubular KK-joints under the axial, in-plane bending (IPB), and out-of-plane bending (OPB) loads, Ships Offshore Struct., 0(0), p.1–15.

DOI: 10.1080/17445302.2022.2062164

Google Scholar

[25] Ahmadi, H., Lotfollahi-Yaghin, M.A., Asoodeh, S. (2015). Degree of bending (DoB) in tubular K-joints of offshore structures subjected to in-plane bending (IPB) loads: Study of geometrical effects and parametric formulation, Ocean Eng., 102, p.105–16.

DOI: 10.1016/j.oceaneng.2015.04.050

Google Scholar

[26] Hobbacher, A.F. (1996). IIW-Fatigue design of welded joints and components: XIII-1539-96/XV-845-96, Paris, France.

Google Scholar

[27] Atteya, M., Mikkelsen, O., Wintle, J., Ersdal, G. (2021). Experimental and numerical study of the elastic scf of tubular joints, Materials (Basel)., 14(15), p.20.

DOI: 10.3390/ma14154220

Google Scholar

[28] Zavvar, E., Henneberg, J., Guedes Soares, C. (2023). Stress concentration factors in FRP-reinforced tubular DKT joints under axial loads, Mar. Struct., 90(4), p.429–52.

DOI: 10.1016/j.marstruc.2023.103429

Google Scholar

[29] Ahmadi, H., Zavvar, E. (2015). Stress concentration factors induced by out-of-plane bending loads in ringstiffened tubular KT-joints of jacket structures, Thin-Walled Struct., 91, p.82–95.

DOI: 10.1016/j.tws.2015.02.011

Google Scholar