[1]
Xu, X., Shao, Y., Gao, X., Mohamed, H.S. (2022). Stress concentration factor (SCF) of CHS gap TT-joints reinforced with CFRP, Ocean Eng., 247(2), p.110722.
DOI: 10.1016/j.oceaneng.2022.110722
Google Scholar
[2]
Bao, S., Wang, W., Li, X., Qi, S., Zhou, J. (2022). Experimental study of hot spot stress for three-planar tubular Y-joint: II. Combined loads, Thin-Walled Struct., 177(March), p.109416.
DOI: 10.1016/j.tws.2022.109416
Google Scholar
[3]
Ahmadi, H., Lotfollahi-yaghin, M.A., Yong-bo, S. (2013). Experimental and Numerical Investigation of Geometric SCFs in Internally Ring-Stiffened Tubular KT-Joints of Offshore Structures, J. Persian Gulf, 43(1), p.7–8.
DOI: 10.1016/j.apor.2012.07.004
Google Scholar
[4]
Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., Rasul, A. (2023). Numerical investigation of crack mitigation in tubular KT-joints using composite reinforcement, 4th Int. Electron. Conf. Appl. Sci., , p.1–8.
DOI: 10.3390/ASEC2023-16290
Google Scholar
[5]
Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., Rasul, A. (2023). Rehabilitation Techniques for Offshore Tubular Joints, J. Mar. Sci. Eng., 11(2), p.461.
DOI: 10.3390/jmse11020461
Google Scholar
[6]
Ahmadi, H., Lotfollahi-Yaghin, M.A., Aminfar, M.H. (2011). Geometrical effect on SCF distribution in uni-planar tubular DKT-joints under axial loads, J. Constr. Steel Res., 67(8), p.1282–91.
DOI: 10.1016/j.jcsr.2011.03.011
Google Scholar
[7]
Zavvar, E., Hectors, K., De Waele, W. (2021). Stress concentration factors of multi-planar tubular KT-joints subjected to in-plane bending moments, Mar. Struct., 78(March), p.103000.
DOI: 10.1016/j.marstruc.2021.103000
Google Scholar
[8]
Zavvar, E., Sadat Hosseini, A., Lotfollahi-Yaghin, M.A. (2021). Stress concentration factors in steel tubular KT-connections with FRP-Wrapping under bending moments, Structures, 33(7), p.4743–65.
DOI: 10.1016/j.istruc.2021.06.100
Google Scholar
[9]
Pang, H.L.J., Lee, C.W. (1995). Three-dimensional finite element analysis of a tubular T-joint under combined axial and bending loading, Int. J. Fatigue, 17(5), p.313–20.
DOI: 10.1016/0142-1123(95)00019-P
Google Scholar
[10]
Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., Nouman, H. (2023). Empirical modeling of stress concentration factors using finite element analysis and artificial neural networks for the fatigue design of tubular KT-joints under combined loading, Fatigue Fract. Eng. Mater. Struct., 46(11), p.4333–49.
DOI: 10.1111/ffe.14122
Google Scholar
[11]
Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., Hina, A. (2023). An Artificial Neural Network Model for the Stress Concentration Factors in KT-Joints Subjected to Axial Compressive Load, Mater. Sci. Forum, 1103(8), p.163–75.
DOI: 10.4028/p-ypo50i
Google Scholar
[12]
Offshore Wimpey. (1990). New Static Strength Guidance for Tubular Joints in Steel Offshore Structures, Offshroe Technol. Rep. (OTH 89 308), , Doi: 195536-A001.
Google Scholar
[13]
Lloyd's Register. (1991). Stress concentration factors for simple tubular joints, Lloyd's Regist. Shipp. Heal. Saf. Exec. - Offshore Technol. Rep. (OTH 91 354), , p.475–83.
Google Scholar
[14]
ARSEM. (1987). Design guides for offshore structures - Welded tubular joints, vol. 1, Technip, Peris France.
Google Scholar
[15]
Recommended Practice for Planning, D. and C.F.O.P.-W.S.D. (2014). API RP 2A WSD 22nd Edition, vol. 2014. UK.
Google Scholar
[16]
Ahmadi, H. (2019). Probabilistic analysis of the DoB in axially-loaded tubular KT-joints of offshore structures, Appl. Ocean Res., 87(February), p.64–80.
DOI: 10.1016/j.apor.2019.03.018
Google Scholar
[17]
Ahmadi, H., Ziyaei Nejad, A. (2016). Stress Concentration Factors in Uniplanar Tubular KT-Joints of Jacket Structures Subjected to In-Plane Bending Loads, Int. J. Marit. Technol. IJMT, 5, p.27–39.
DOI: 10.1016/j.tws.2015.02.011
Google Scholar
[18]
Ahmadi, H., Ali Lotfollahi-Yaghin, M., Yong-Bo, S., Aminfar, M.H. (2012). Parametric study and formulation of outer-brace geometric stress concentration factors in internally ring-stiffened tubular KT-joints of offshore structures, Appl. Ocean Res., 38(7), p.74–91.
DOI: 10.1016/j.apor.2012.07.004
Google Scholar
[19]
Ahmadi, H., Lotfollahi-Yaghin, M.A. (2015). Stress concentration due to in-plane bending (IPB) loads in ring-stiffened tubular KT-joints of offshore structures: Parametric study and design formulation, Appl. Ocean Res., 51(3), p.54–66.
DOI: 10.1016/j.apor.2015.02.009
Google Scholar
[20]
N'Diaye, A., Hariri, S., Pluvinage, G., Azari, Z. (2009). Stress concentration factor analysis for welded, notched tubular T-joints under combined axial, bending and dynamic loading, Int. J. Fatigue, 31(2), p.367–74.
DOI: 10.1016/j.ijfatigue.2008.07.014
Google Scholar
[21]
Efthymiou, M. (1988). Development of SCF formulae and generalised influence functions for use in fatigue analysis, Surrey, UK, UEG Offshore Research.
Google Scholar
[22]
Ahmadi, H., Lotfollahi-Yaghin, M.A., Aminfar, M.H. (2011). Effect of stress concentration factors on the structural integrity assessment of multi-planar offshore tubular DKT-joints based on the fracture mechanics fatigue reliability approach, Ocean Eng., 38(17), p.1883–93.
DOI: 10.1016/j.oceaneng.2011.08.004
Google Scholar
[23]
Ahmadi, H., Zavvar, E. (2020). Degree of bending (DoB) in offshore tubular KT-joints under the axial, in-plane bending (IPB), and out-of-plane bending (OPB) loads, Appl. Ocean Res., 95(10), p.1187–206.
DOI: 10.1016/j.apor.2019.102015
Google Scholar
[24]
Gao, J., Duan, M., Yuan, Y. (2022). Degree of bending (DoB) in jack-up unit tubular KK-joints under the axial, in-plane bending (IPB), and out-of-plane bending (OPB) loads, Ships Offshore Struct., 0(0), p.1–15.
DOI: 10.1080/17445302.2022.2062164
Google Scholar
[25]
Ahmadi, H., Lotfollahi-Yaghin, M.A., Asoodeh, S. (2015). Degree of bending (DoB) in tubular K-joints of offshore structures subjected to in-plane bending (IPB) loads: Study of geometrical effects and parametric formulation, Ocean Eng., 102, p.105–16.
DOI: 10.1016/j.oceaneng.2015.04.050
Google Scholar
[26]
Hobbacher, A.F. (1996). IIW-Fatigue design of welded joints and components: XIII-1539-96/XV-845-96, Paris, France.
Google Scholar
[27]
Atteya, M., Mikkelsen, O., Wintle, J., Ersdal, G. (2021). Experimental and numerical study of the elastic scf of tubular joints, Materials (Basel)., 14(15), p.20.
DOI: 10.3390/ma14154220
Google Scholar
[28]
Zavvar, E., Henneberg, J., Guedes Soares, C. (2023). Stress concentration factors in FRP-reinforced tubular DKT joints under axial loads, Mar. Struct., 90(4), p.429–52.
DOI: 10.1016/j.marstruc.2023.103429
Google Scholar
[29]
Ahmadi, H., Zavvar, E. (2015). Stress concentration factors induced by out-of-plane bending loads in ringstiffened tubular KT-joints of jacket structures, Thin-Walled Struct., 91, p.82–95.
DOI: 10.1016/j.tws.2015.02.011
Google Scholar