[1]
X. Zhao, X. Chen, X. Wang, Effect of aging processes on corrosion behavior and stress corrosion sensitivity of pre-stretched 7075 aluminum alloy, Mater. Corros. 69 (2018) 850-857.
DOI: 10.1002/maco.201709879
Google Scholar
[2]
J.C. Williams, E.A. Starke, Progress in structural materials for aerospace systems, Acta Mater. 51 (2003) 5775-5799.
DOI: 10.1016/j.actamat.2003.08.023
Google Scholar
[3]
Z. Huda, P. Edi, Materials selection in design of structures and engines of supersonic aircrafts: A review, Mater. Des. 46 (2013) 552-560.
DOI: 10.1016/j.matdes.2012.10.001
Google Scholar
[4]
T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des. 1980-2015 56 (2014) 862-871.
DOI: 10.1016/j.matdes.2013.12.002
Google Scholar
[5]
M. Song, L. Wu, J. Liu, Y. Hu, Effects of laser cladding on crack resistance improvement for aluminum alloy used in aircraft skin, Opt. Laser Technol. 133 (2021) 106531.
DOI: 10.1016/j.optlastec.2020.106531
Google Scholar
[6]
L. Bao, et al., Surface characteristics and stress corrosion behavior of AA 7075-T6 aluminum alloys after different shot peening processes, Surf. Coat. Technol. 440 (2022) 128481.
DOI: 10.1016/j.surfcoat.2022.128481
Google Scholar
[7]
S.V. Emani, J. Benedyk, P. Nash, D. Chen, Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions, J. Mater. Sci. 44 (2009) 6384-6391.
DOI: 10.1007/s10853-009-3879-8
Google Scholar
[8]
A. Karaaslan, I. Kaya, H. Atapek, Effect of aging temperature and of retrogression treatment time on the microstructure and mechanical properties of alloy AA 7075, Met. Sci. Heat Treat. 49 (2007) 443-447.
DOI: 10.1007/s11041-007-0083-9
Google Scholar
[9]
J.K. Park, A.J. Ardell, Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers, Metall. Trans. A 14 (1983) 1957-1965.
DOI: 10.1007/BF02662363
Google Scholar
[10]
M.M. Tash, S. Alkahtani, Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys, Int. J. Mater. Metall. Eng. 8 (2015) 252-256.
Google Scholar
[11]
A. Joshi, C.R. Shastry, M. Levy, Effect of Heat Treatment on Solute Concentration at Grain Boundaries in 7075 Aluminum Alloy, Metall. Trans. A 12 (1981) 1081-1088.
DOI: 10.1007/BF02643489
Google Scholar
[12]
G. Özer, A. Karaaslan, Relationship of RRA heat treatment with exfoliation corrosion, electrical conductivity and microstructure of AA7075 alloy, Mater. Corros. 68 (2017).
DOI: 10.1002/maco.201709497
Google Scholar
[13]
G. Özer, A. Karaaslan, Properties of AA7075 aluminum alloy in aging and retrogression and reaging process, Trans. Nonferrous Met. Soc. China 27 (2017) 2357-2362.
DOI: 10.1016/S1003-6326(17)60261-9
Google Scholar
[14]
S. Kilic, I. Kacar, M. Sahin, F. Ozturk, O. Erdem, Effects of Aging Temperature, Time, and Pre-Strain on Mechanical Properties of AA7075, Mater. Res. 22 (2019).
DOI: 10.1590/1980-5373-mr-2019-0006
Google Scholar
[15]
Effect of Pitting Corrosion on Fatigue Performance of Shot-peened Aluminium Alloy 7075-T651, dokumen.tips. [Online]. Available: https://dokumen.tips/documents/effect-of-pitting-corrosion-on-fatigue-performance-of-shot-peened-aluminium-alloy-7075-t651.html.
DOI: 10.1016/j.jmatprotec.2010.03.004
Google Scholar
[16]
P.K. Rout, M.M. Ghosh, K.S. Ghosh, Influence of Aging Treatments on Alterations of Microstructural Features and Stress Corrosion Cracking Behavior of an Al-Zn-Mg Alloy, J. Mater. Eng. Perform. 24 (2015) 2792-2805.
DOI: 10.1007/s11665-015-1559-1
Google Scholar
[17]
Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy - UQ eSpace. [Online]. Available: https://espace.library.uq.edu.au/view/UQ:68350.
DOI: 10.14264/uql.2016.587
Google Scholar
[18]
Z. Li, H. Jiang, D. Yan, L. Rong, Influence of Scandium Addition on Stress Corrosion Cracking Susceptibility of Al-Zn-Mg Alloy in Different Corrosive Environments, Metals 8 (2018) 225.
DOI: 10.3390/met8040225
Google Scholar
[19]
X. Qi, J. Jin, C. Dai, W. Qi, W. He, R. Song, A Study on the Susceptibility to SCC of 7050 Aluminum Alloy by DCB Specimens, Mater. Basel Switz. 9 (2016) 884.
DOI: 10.3390/ma9110884
Google Scholar
[20]
N.J.H. Holroyd, G.M. Scamans, Sensitization, Intergranular Corrosion, and Environment-Induced Cracking of Aluminum-Magnesium Alloys, Corros. -Houst. Tx- 72 (2016) 135-135.
DOI: 10.5006/0010-9312-72.2.135
Google Scholar
[21]
Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. [Online]. Available: https://www.infona.pl/resource/bwmeta1. element.elsevier-381c3d93-f1a5-39d4-84dc-52b414e0a8b9.
DOI: 10.1016/j.actamat.2010.05.017
Google Scholar
[22]
V. Sampath, Retrogression and re-aging treatment on short transverse tensile properties of 7010 aluminium alloy extrusions, Mater. Des. 32 (2011) 4050-4053.
DOI: 10.1016/j.matdes.2011.03.034
Google Scholar
[23]
N. Han, X. Zhang, S. Liu, B. Ke, X. Xin, Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050, Mater. Sci. Eng. A 528 (2011) 3714-3721.
DOI: 10.1016/j.msea.2011.01.068
Google Scholar
[24]
Y.-P. Xiao, Q.-L. Pan, W.-B. Li, X.-Y. Liu, Y.-B. He, Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy, Mater. Des. 32 (2011) 2149.
DOI: 10.1016/j.matdes.2010.11.036
Google Scholar
[25]
A.L. Carvalho, J. Martins, Effect of Interrupted Ageing and Retrogression-Reageing Treatments on Fatigue Crack Growth with a Single Applied Overload in 7050 Aluminum Alloy, Mater. Res. 21 (2018).
DOI: 10.1590/1980-5373-mr-2017-0526
Google Scholar
[26]
Electrochemical investigation on the hydrogen permeation behavior of 7075-T6 Al alloy and its influence on stress corrosion cracking | SpringerLink. [Online]. Available: https://link.springer.com/article/.
DOI: 10.1007/s12613-015-1128-5
Google Scholar
[27]
X. Qi, J. Jin, C. Dai, W. Qi, W. He, R. Song, A Study on the Susceptibility to SCC of 7050 Aluminum Alloy by DCB Specimens, Mater. Basel Switz. 9 (2016) 884.
DOI: 10.3390/ma9110884
Google Scholar
[28]
X. Zhang, R. Song, B. Sun, Effects of Aging Treatment on Intergranular Corrosion and Stress Corrosion Cracking Behavior of AA7003, J. Wuhan Univ. Technol.-Mater. Sci. Ed. 33 (2018) 1198-1204.
DOI: 10.1007/s11595-018-1953-2
Google Scholar
[29]
Y. Sun, et al., Effects of critical defects on stress corrosion cracking of Al–Zn–Mg–Cu–Zr alloy, J. Mater. Res. Technol. 12 (2021) 1303-1318.
DOI: 10.1016/j.jmrt.2021.03.070
Google Scholar
[30]
M. Orłowska, et al., The Influence of Heat Treatment on the Mechanical Properties and Corrosion Resistance of the Ultrafine-Grained AA7075 Obtained by Hydrostatic Extrusion, Materials 15 (2022) 12.
DOI: 10.3390/ma15124343
Google Scholar
[31]
F.E. El Garchani, M.R. Kabiri, Comparative study of corrosion susceptibility and microstructural effects on AA7075-T6 aluminum alloys under different heat treatments, Int. J. Adv. Manuf. Technol. 127 (2023) 4123-4132.
DOI: 10.1007/s00170-023-11731-4
Google Scholar
[32]
F. El Garchani, M.R. Kabiri, Evaluation of AA 7075-T6 Alloy's Corrosion Behavior Using Salt Spray Test, vol. 926 LNNS, Springer Nature Switzerland, 2024.
DOI: 10.1007/978-3-031-54664-8_1
Google Scholar
[33]
ASTM G39-99, Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test, ASTM Int., vol. 99, Reapproved, 2016.
DOI: 10.1520/G0039-99R16
Google Scholar
[34]
A. Meyveci, İ. Karacan, U. Çalıgülü, H. Durmuş, Pin-on-disc characterization of 2xxx and 6xxx aluminium alloys aged by precipitation age hardening, J. Alloys Compd. 491 (2010) 278-283.
DOI: 10.1016/j.jallcom.2009.10.142
Google Scholar
[35]
X. Xu, D. Liu, X. Zhang, C. Liu, D. Liu, A. Ma, Effects of Ultrasonic Surface Rolling on the Localized Corrosion Behavior of 7B50-T7751 Aluminum Alloy, Materials 13 (2020) 738.
DOI: 10.3390/ma13030738
Google Scholar
[36]
R. Su, Y. Qu, X. Li, J. You, R. Li, Effect of Retrogression and Reaging on Stress Corrosion Cracking of Spray Formed Al Alloy, Mater. Sci. Appl. 7 (2016) 1.
DOI: 10.4236/msa.2016.71001
Google Scholar