Application of Gröbner Basis Algorithm for Estimating Induction Motors Parameters

Article Preview

Abstract:

This paper proposes a method for estimating the equivalent circuit parameters of an induction motor from manufacturer’s datasheet information using the Gröbner basis algorithm. Induction motor parameters are crucial for motor control and performance monitoring, yet they are often not readily available from manufacturers. To address this issue, an approach is developed that minimizes the normalized error between the computed performance of the equivalent circuit and the manufacturer’s specifications. The Gröbner basis algorithm is implemented in MATLAB to facilitate parameter estimation. The method is tested on 5 hp, 50 hp, and 500 hp sample motors and the results are compared with Genetic Algorithm and Newton-Raphson methods. Findings show that the Gröbner basis approach achieves comparable accuracy to these established methods, with percentage errors generally below 7% for key parameters like rotor resistance, stator resistance, and leakage impedance. Notably, the Gröbner basis method requires no iterations, overcoming the slow convergence issues associated with the other techniques. This study demonstrates that the Gröbner basis algorithm offers an effective, non-iterative solution for estimating induction motor parameters with moderate accuracy, providing a valuable alternative to conventional approaches.

You might also be interested in these eBooks

Info:

Pages:

135-144

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Chapman, Electric Machinery Fundamentals, 5th ed., McGraw-Hill, Inc., New York, 2012.

Google Scholar

[2] R. Calik, R.O. Simsek, O.C. Kivanc, A Simple Recursive Least Squares Approach for Off-line Parameter Identification of FOC Permanent Magnet Synchronous Machine Drive, 2022 Global Energy Conference (GEC), 2022, pp.340-344.

DOI: 10.1109/gec55014.2022.9986582

Google Scholar

[3] S.D. Niño-Callejas, J.C. Palombi-Gómez, O.D. Montoya-Giraldo, Applying the Sine-Cosine Optimization Algorithm to the Parametric Estimation Problem in Three-Phase Induction Motors, Ingeniería e Investigación (2024).

DOI: 10.15446/ing.investig.110310

Google Scholar

[4] F. Duan, R. Zivanovic, S.F. Al-Sarawi, D. Mba, Induction Motor Parameter Estimation Using Sparse Grid Optimization Algorithm, IEEE Trans. Ind. Informatics Vol. 12, No. 3, pp.1453-1461 (2016).

DOI: 10.1109/tii.2016.2573743

Google Scholar

[5] H. Ascencion-Mestiza, S. Maximov, E. Mezura-Montes, J.C. Olivares-Galvan, R. Ocon-Valdez, R. Escarela-Perez, Estimation of the Equivalent Circuit Parameters in Transformers Using Evolutionary Algorithms, Mathematical and Computational Applications (2023).

DOI: 10.3390/mca28020036

Google Scholar

[6] J. Susanto, S. Islam, Improved Parameter Estimation Techniques for Induction Motors using Hybrid Algorithms, arXiv:1704.02424 (2017).

Google Scholar

[7] G.F.V. Amaral, J.M.R. Baccarini, F.C.R. Coelho, L.M. Rabelo, A High Precision Method for Induction Machine Parameters Estimation From Manufacturer Data, IEEE Trans. Energy Convers. Vol. 36, No. 2, pp.1226-1233 (2021).

DOI: 10.1109/tec.2020.3032320

Google Scholar

[8] P. Pillay, R. Nollan, T. Haque, Application of Genetic Algorithms to Motor Parameter Determination for Transient Torque Calculations, IEEE Trans. Ind. Appl. Vol. 33, No. 5, pp.1273-1282 (1997).

DOI: 10.1109/28.633806

Google Scholar

[9] C. Eder, P. Lairez, R. Mohr, M.S. Din, A Signature-Based Algorithm for Computing the Nondegenerate Locus of a Polynomial System, J. Symb. Comput. Vol. 119, pp.1-21 (2022).

DOI: 10.1016/j.jsc.2023.02.001

Google Scholar

[10] J.L. Awange, B. Palancz, R.H. Lewis, Groebner Basis in Geodesy and Geoinformatics, International Congress on Mathematical Software (2014).

Google Scholar

[11] Y.J. Liu, J. Peddieson, Application of Groebner Basis Methodology to Nonlinear Mechanics Problems, International Congress on Mathematical Software (2014).

DOI: 10.1007/978-3-662-44199-2_61

Google Scholar

[12] J. Wu, Y. Zheng, Z. Gao, Y. Jiang, X. Hu, Y. Zhu, J. Jiao, M. Liu, Quadratic Pose Estimation Problems: Globally Optimal Solutions, Solvability/Observability Analysis, and Uncertainty Description, IEEE Trans. Robot. Vol. 38, pp.3314-3335 (2022).

DOI: 10.1109/tro.2022.3155880

Google Scholar

[13] T. Ito, Y. Hoshi, N. Shinohara, S. Uchiyama, Polynomial Selection of F4 for Solving the MQ Problem, JSIAM Lett. Vol. 14, pp.135-138 (2022).

DOI: 10.14495/jsiaml.14.135

Google Scholar

[14] M. Díaz-Cortés, E. Cuevas, R. Rojas, Gravitational Search Algorithm Applied to Parameter Identification for Induction Motors, in: Advances in Soft Computing (2017).

DOI: 10.1007/978-3-319-57813-2_3

Google Scholar

[15] R.-C. Wu, Y.-W. Tseng, C.-Y. Chen, Estimating Parameters of the Induction Machine by the Polynomial Regression, Applied Sciences Vol. 8, No. 7, p.1073 (2018).

DOI: 10.3390/app8071073

Google Scholar

[16] B. Buchberger, An Algorithm for Finding the Bases Elements of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal (German), PhD thesis, Univ. of Innsbruck (Austria), (1965).

DOI: 10.1016/j.jsc.2005.09.007

Google Scholar

[17] B. Buchberger, An Algorithmic Criterion for the Solvability of Algebraic Systems of Equations (German), Aequationes Mathematicae Vol. 4, No. 3, pp.374-383 (1970).

Google Scholar