Design and Performance Analysis of Fuzzy Sliding Mode Controller for Maximum Power Point Tracking Photovoltaic Water Pumping System (Case Study: Bahir Dar University Health Science College, Bahir Dar, Ethiopia)

Article Preview

Abstract:

The application of photovoltaic (PV) system in different sectors increases dramatically since it is clean, sustainable, and easy to maintain. However, PV systems have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP), which depends on environmental factors like temperature and irradiation. Maximum power point tracking (MPPT) is crucial for PV power systems to consistently extract the maximum power from solar panels as it optimizes power output under varying conditions. In this paper, a standalone PV-powered water pumping system is designed for Bahir Dar University Health Science College. Then fuzzy sliding mode control (FSMC) is designed for MPPT. The proposed controller is simulated in MATLAB/ SIMULINK and the controller's performance for optimizing the system's power output under different environmental and load conditions is evaluated. The effectiveness of the proposed MPPT algorithm is validated by comparing its performance with fuzzy logic control (FLC) and sliding mode control (SMC). Based on the simulation result FSMC has an MPPT efficiency of 99.13% compared with 80.21% in FLC and 97.81% in SMC.

You might also be interested in these eBooks

Info:

Pages:

145-164

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Dlimi et al., Modeling, simulation and efficiency assessment of a direct coupled water pumping PV system in semi-arid coastal areas, Energy Convers. Manag.23(2024)100626

DOI: 10.1016/j.ecmx.2024.100626

Google Scholar

[2] A. Badis and M. N. Mansouri, A Genetic Algorithm Optimized MPPT Controller for a PV System with DC-DC Boost Converter, 2017 International Conference on Engineering & MIS (ICEMIS) (2017)1–6.

DOI: 10.1109/icemis.2017.8273010

Google Scholar

[3] S. Miqoi, A. El Ougli, M. Boutouba, and B. Tidhaf, Fuzzy sliding mode control for maximum power point tracking of a photovoltaic pumping system, J. Electr. Syst.13(2017)95–114.

DOI: 10.11591/ijpeds.v10.i1.pp414-422

Google Scholar

[4] F. Zebiri, A. Kessal, L. Rahmani, and A. Chebabhi, Analysis and design of photovoltaic pumping system based on nonlinear speed controller, J. Power Technol.96(2016) 40–48.

Google Scholar

[5] S. G. Malla et al., Whale Optimization Algorithm for PV Based Water Pumping System Driven by BLDC Motor Using Sliding Mode Controller, IEEE J. Emerg. Sel. Top. Power Electron.10(2022)4832–4844.

DOI: 10.1109/jestpe.2022.3150008

Google Scholar

[6] S. Anbuchandran, D. S. Stephen, M. A. Babu, and A. Bhuvanesh, MIWO based MPPT of PV system for induction motor driven water pumping system, Adv. Electr. Eng. Electron. Energy.10(2024)100835.

DOI: 10.1016/j.prime.2024.100835

Google Scholar

[7] A. DOLARA, R. FARANDA, and S. LEVA, Energy Comparison of Seven MPPT Techniques for PV Systems, J. Electromagn. Anal. Appl.01(2009)152–162.

DOI: 10.4236/jemaa.2009.13024

Google Scholar

[8] M. A. G. De Brito, L. P. Sampaio, G. Luigi, G. A. E Melo, and C. A. Canesin, Comparative analysis of MPPT techniques for PV applications, 3rd Int. Conf. Clean Electr. Power Renew. Energy Resour. Impact, ICCEP 2011(2011)99–104.

DOI: 10.1109/iccep.2011.6036361

Google Scholar

[9] A. Mohapatra, B. Nayak, and K. B. Mohanty, Performance improvement in MPPT of SPV system using NN controller under fast changing environmental condition, 2016 IEEE 6th Int. Conf. Power Syst. ICPS 2016.(2016)0–4, 2016.

DOI: 10.1109/icpes.2016.7584159

Google Scholar

[10] M. S. Alam, M. A. Mohammad, and R. Chowdhury, Matlab Simscape simulation of an open voltage algorithm based maximum power point tracker for battery charging PV system, Proc. 2014 3rd Int. Conf. Dev. Renew. Energy Technol. ICDRET 2014.(2014)908–911.

DOI: 10.1109/icdret.2014.6861675

Google Scholar

[11] T. W. Hsu, H. H. Wu, D. L. Tsai, and C. L. Wei, Photovoltaic Energy Harvester With Fractional Open-Circuit Voltage Based Maximum Power Point Tracking Circuit, IEEE Trans. Circuits Syst. II Express Briefs. 66(2019)257–261.

DOI: 10.1109/tcsii.2018.2838672

Google Scholar

[12] J. Ahmad, A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays, ICSTE 2010 - 2010 2nd Int. Conf. Softw. Technol. Eng. Proc. 1(2010) 247–250.

DOI: 10.1109/icste.2010.5608868

Google Scholar

[13] A. V. S. Moreira, A. De Souza Lima, A. L. Maitelli, and L. S. Barros, An Adaptive Perturb and Observe Method with Clustering for Photovoltaic Module with Smart Bypass Diode under Partial Shading, 2019 IEEE PES Conf. Innov. Smart Grid Technol. ISGT Lat. Am. 2019.(2019)3–8.

DOI: 10.1109/isgt-la.2019.8895317

Google Scholar

[14] D. Verma, Maximum Power Point Tracking in SIMSCAPE / MATLAB, 2017 Int. Conf. Intell. Sustain. Syst., no. Iciss.(2017)148–152.

DOI: 10.1109/iss1.2017.8389387

Google Scholar

[15] H. Mahamudul, M. Islam, A. Shameem, J. Rana, and H. Metselaar, Modelling of PV module with incremental conductance MPPT controlled buck-boost converter, Proc. 2013 2nd Int. Conf. Adv. Electr. Eng. ICAEE 2013.(2015)197–202.

DOI: 10.1109/icaee.2013.6750332

Google Scholar

[16] M. Berrera, A. Dolara, R. Faranda, and S. Leva, Experimental test of seven widely-adopted MPPT algorithms, 2009 IEEE Bucharest PowerTech Innov. Ideas Towar. Electr. Grid Futur.(2009)1–8.

DOI: 10.1109/ptc.2009.5282010

Google Scholar

[17] M. Derri, M. Bouzi, I. Lagrat, and Y. Baba, Fuzzy sliding mode control for photovoltaic system," Int. J. Power Electron. Drive Syst.7(2016)964–973.

DOI: 10.11591/ijpeds.v7.i3.pp964-973

Google Scholar

[18] A. I. M. Ali et al., An Enhanced P&O MPPT Algorithm with Concise Search Area for Grid-Tied PV Systems, IEEE Access.11(2023)79408–79421.

DOI: 10.1109/access.2023.3298106

Google Scholar

[19] N. Kumari.ch and V. S. V. Kaumudi Pravallika, Fuzzy based Improved Incremental Conductance MPPT algorithm in PV System, Proc. CONECCT 2020 - 6th IEEE Int. Conf. Electron. Comput. Commun. Technol.19(202)10–15.

DOI: 10.1109/conecct50063.2020.9198384

Google Scholar

[20] S. Messalti, A. G. Harrag and A. E. Loukriz, A new neural networks MPPT controller for PV systems, IREC2015 The Sixth International Renewable Energy Congress, Sousse, Tunisia, 201.(2015)1-6.

DOI: 10.1109/irec.2015.7110907

Google Scholar

[21] D. Saravana, V. Harikrishnan, V. Umayal, and M. Indumathy, Performance Analysis of Slide Mode Control based MPPT Controller for Photovoltaic Applications, International Conference on Advances in Engineering and Technology (ICAET'2014) March 29-30, 2014 Singapore.(2014).

DOI: 10.15242/iie.e0314154

Google Scholar

[22] S. Vergura, Fuzzy Logic based MPPT Control Strategies of PV Systems, 2023 IEEE Int. Conf. Environ. Electr. Eng. 2023 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur.(2023)1–6.

DOI: 10.1109/eeeic/icpseurope57605.2023.10194707

Google Scholar

[23] G. Balasubramanian and S. Singaravelu, Fuzzy logic controller for the maximum power point tracking in photovoltaic system, Int. J. Comput. Appl.41(2012)22–28.

DOI: 10.5120/5594-7840

Google Scholar

[24] M. Abulaila, I. M. Alsudi, and K. M. Al-aubidy, A Deep Learning Approach for MPPT of PV System : Design and Comparison, 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD).(2024)87–91.

DOI: 10.1109/ssd61670.2024.10549659

Google Scholar

[25] M. Mallat, AN Optimized Genetic Algorithm ( GA ) -based MPPT for off-grid solar Photovoltaic system, 2023 IEEE Int. Conf. Artif. Intell. Green Energy.(2023)1–5.

DOI: 10.1109/icaige58321.2023.10346555

Google Scholar

[26] A. -w. Ibrahim et al., PV maximum power-point tracking using modified particle swarm optimization under partial shading conditions, in Chinese Journal of Electrical Engineering, 6()106-121.

DOI: 10.23919/cjee.2020.000035

Google Scholar

[27] T. Laagoubi, M. Bouzi and M. Benchagra, "Analysis and comparison of MPPT nonlinear controllers for PV system," 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 2015.(2015)1-5.

DOI: 10.1109/irsec.2015.7455012

Google Scholar

[28] World Bank, SOLAR PUMPING The Basics, World Bank, Washington, DC., 2018.

Google Scholar

[29] A. Molla, DESIGN OF INTELLIGENT AND HYBRID BASED MPPT CONTROLLER FOR PHOTOVOLTAIC WATER PUMPING SYSTEM, ADDIS ABABA Inst. Technol.(2018)

Google Scholar

[30] world bank, Solar Water Pumping Systems System Design , Selection and Installation Guidelines, 2017.

Google Scholar

[31] A. Elnozahy, M. Abdel-Salam, and F. K. Abo-Elyousr, Optimal techno-economic energy coordination of solar PV water pumping irrigation systems, Energy.288(2023)129817.

DOI: 10.1016/j.energy.2023.129817

Google Scholar

[32] M. Al-Smairan, H. A. Khawaldeh, B. Shboul, and F. Almomani, Techno-enviro-economic analysis of grid-connected solar powered floating PV water pumping system for farmland applications: A numerical design model, Heliyon.10(2024).

DOI: 10.1016/j.heliyon.2024.e37888

Google Scholar

[33] R. J. Chilundo, U. S. Mahanjane, and D. Neves, Design and Performance of Photovoltaic Water Pumping Systems: Comprehensive Review towards a Renewable Strategy for Mozambique, J. Power Energy Eng.06(2018)32–63.

DOI: 10.4236/jpee.2018.67003

Google Scholar

[34] J. S. Adam and A. A. Fashina, Design of a hybrid solar photovoltaic system for Gollis University administrative block, Somaliland, Int. J. Phys. Res.7(2019)37–47.

DOI: 10.14419/ijpr.v7i2.28949

Google Scholar

[35] Bahir Dar climate: Weather Bahir Dar & temperature by month. Accessed: Aug. 14, 2024. [Online]. Available: https://en.climate-data.org/africa/ethiopia/amhara/bahir-dar-14413/

DOI: 10.31881/tlr.2023.221

Google Scholar

[36] S. Marhraoui, A. Abbou, N. El Hichami, S. E. Rhaili, and S. D. Krit, Fuzzy sliding mode hybrid control MPPT strategy and PI control as a controller for a battery integrated with PV system, J. Adv. Res. Dyn. Control Syst.12(2020)415–428.

DOI: 10.5373/jardcs/v12sp1/20201089

Google Scholar

[37] Sharp ND-240QCJ (240W) Solar Panel. Accessed: Sep. 07, 2024. [Online]. Available: http://www.solardesigntool.com/components/module-panel-solar/Sharp/1448/ND-240QCJ/specification-data-sheet.html

Google Scholar

[38] M. Farhat, O. Barambones, and L. Sbita, A new maximum power point method based on a sliding mode approach for solar energy harvesting. Appl. Energy.185(2017)1185–1198.

DOI: 10.1016/j.apenergy.2016.03.055

Google Scholar

[39] A. Borni et al., Optimized MPPT Controllers Using GA for Grid Connected Photovoltaic Systems, Comparative study, Energy Procedia.119(2018)278–296.

DOI: 10.1016/j.egypro.2017.07.084

Google Scholar

[40] A. Pandey, MPPT Control Strategies for Solar Energy Harvesting Using SMC Approach, Ijmert.5(2018)26–35.

Google Scholar

[41] O. Zebraoui and M. Bouzi, Robust sliding mode control based MPPT for a PV/Wind hybrid energy system, Int. J. Intell. Eng. Syst.11(2018)290–300.

DOI: 10.22266/ijies2018.1031.27

Google Scholar