[1]
M. Widdowson, Laterite. In Gornitz V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments: Encyclopedia of Earth Sciences, Springer, (2009).
DOI: 10.1007/978-1-4020-4411-3_127
Google Scholar
[2]
H. Bonsor, A. Macdonald, J. Davies, Evidence for extreme variations in the permeability of laterite from a detailed analysis of well behavior in Nigiria, Hydrologcal Process. 28 (2014).
DOI: 10.1002/hyp.9871
Google Scholar
[3]
J. Mohammad, A. Rassoul, S. Amirhomayoun, Sustainable alkali-activated material, in: Handbook of Sustainable Concrete and Industrial Waste Management: C. Francesco, C. Raffaele, F. Ilenia (Eds.), Woodhead Publishing, (2022), Pp. 489-508, ISBN 9780128217306.
DOI: 10.1016/B978-0-12-821730-6.00030-9
Google Scholar
[4]
A.A. Firoozi, A.A. Firoozi, M.S. Baghini, A review of physical and chemical clayey. J Civ Eng Urban, 6(4) (2017) 64–71.
Google Scholar
[5]
F.Q. Al-Naje, A.H. Abed, A.J. Al-Taie, A Rev. of Sustainable Mats to Improve Geotech. Properties of Soil. Al-Nahran J. for Eng. Sci. 23 (2020) 289-305.
DOI: 10.29194/NJES.23030289
Google Scholar
[6]
A. Pandey, A. Rabbani, Soil stabilization using cement, Int. J. of Civil Eng. and Tech., 8 (2017) 316-322. IJCIET_08_06_035.
Google Scholar
[7]
E. Gunay, M. Kara, B. Kavakli, S. Tayfur, K. Eren, S.A. Yildirim, Steel Slag and Waste Management, Key Eng, 264-268 (2004) 2481-2484. DOI: 10.4028/www.scientific.net/ KEM.264-268.2481.
DOI: 10.4028/www.scientific.net/kem.264-268.2481
Google Scholar
[8]
T. Carlos, R. Julia, P. Juan, A. Francisco, Steel slags, in: Wodhead Publishng Serie in Civil and Struc. Eng., New Trnds in Eco-efficint and Recycle Conc.: B. Jorge, A. Francisco (Eds.) Woodhead Publishing, (2019), Pp 169-190, ISBN 9780081024805.
DOI: 10.1016/B978-0-08-102480-5.00007-5
Google Scholar
[9]
J. Zhang, H. Masuura, F. Tshukihashi, Processes for Recycling, In book: Treatise on Process Metallurgy, (2014).
DOI: 10.1016/B978-0-08-096988-6.00036-5
Google Scholar
[10]
K. Pradeep, S. Shalinee, Utilization of steel slag waste as construction material: A rev.. Mat. Today: Proceedngs, (2023).
DOI: 10.1016/j.matpr.2023.01.015
Google Scholar
[11]
L. Yadu, R.K. Tripathi, Stabilization of soft soil with granulated blast furnace slag and fly ash, Int J Res Eng Technol, 2 (2) (2013)115–119.
DOI: 10.15623/ijret.2013.0202005
Google Scholar
[12]
I. Akinwumi, Soil modification by the application of Slag, Periodica Polytech Civil Eng., 58 (4) (2014) 371–377.
DOI: 10.3311/PPci.7239
Google Scholar
[13]
H.D. Golakiya, D.S. Chandresh, Studies on geotechnical properties of block cotton soil stabilize with furnace dust and dolomiticlim, Int Res J Eng Technol (IRJET) 02(08) (2015) 810–823.
Google Scholar
[14]
K. Patel, Effects of steel slag on the strength properties of clay, lateritic and block cotton clay soil. SAMRIDDHI, 8(02) (2016) 121–126.
DOI: 10.18090/samriddhi.v8i2.7145
Google Scholar
[15]
H. Aldeeky, O. Al-Hattamley, Experimental stud on the utilization of fine slag on stabilizing high plasticity subgrade soil, Adv Civil Eng., 2017 (2017).
DOI: 10.1155/2017/9230279
Google Scholar
[16]
S.I. Adedokun, A.A. Abideen, M.A. Adedokun, Effect of marble dust and slag on consistency limit and compaction character of lateritic soil, IOP Conf. Ser.: Mats Sci. and Eng, 527 (2019). 012026.
DOI: 10.1088/1757-899X/527/1/012026
Google Scholar
[17]
W. Kabeta, H. Lemma, Modelng the applicatn of slag in stabilizng expansve soil, Model. Earth Syst. Environ., (2023).
DOI: 10.1007/s40808-023-01734-1
Google Scholar
[18]
M. Zumrawi, A. Babikir, Lab Study of Steel Slag Used in Stabilizing Expansive Soil, Asian Eng. Rev., 4 (2017) 1-6.
DOI: 10.20448/journal.508.2017.41.1.6
Google Scholar
[19]
A.S. Brand, P. Singhvi, E.O. Fanijo, T. Erol,. Stabilization of a clay soil with ladle metallurgy furnace slag fine. Materials,13 (19) (2020).
DOI: 10.3390/MA13194251
Google Scholar
[20]
British Standard 1377, Methods of tests for soils for Civil Engineering Purposes, British Standard Institute, London, UK, 2022.
Google Scholar
[21]
British Standard 1924, Hydraulically bound and stabilized materials for Civil Engineering Purposes, British Standard Institute, London, UK, 2018.
Google Scholar
[22]
Nigeria General Specifications (NGS), Nigeria General Specifications for Roads and Bridges, Volume II, Abuja, Nigeria, 1997.
Google Scholar
[23]
G.S. Kumar, P.K. Saini, R. Deoliya, A.K. Mishra, S.K. Negi, Characterization of laterite soil and use in construction applications: A rev., Res., Conservation & Recycling Adv., 16 (2022) 1-16.
DOI: 10.1016/j.rcradv.2022.200120
Google Scholar
[24]
Indian Minerals Yearbook, Mineral Reviews, Volume III, Ministry of Mines, New Delhi, India, 2020.
Google Scholar
[25]
F.G. Bell, Engineering treatment of soils, E & FN Spoon, London, 1993.
DOI: 10.1201/9781482288971
Google Scholar
[26]
C. Oyelami, J.L. Van Rooy, Mineralogical characterization of tropical residual soils from south-western Nigeria and its impact on earth building bricks, Env. Earth Sciences, 77 (5) (2018) 178.
DOI: 10.1007/s12665-018-7354-1
Google Scholar
[27]
ASTM C-618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, West Conshohocken, PA, 19428-2959 USA, 2017.
DOI: 10.1520/c0618-22
Google Scholar
[28]
D. Coduto, Geotechnical Engineering: Principle and Practice, Prentice Hall, Upper Saddle Riv., NJ, USA, 1999.
Google Scholar
[29]
E.A. Meshida, E.O. Akanbi, Effect of regarding on the properties of coastal plain sands, NSE Technical Transactions, 42 (2) (2007) 18-20.
Google Scholar
[30]
A.C. Apata, S.I. Adedokun, "Geochemical Analysis of Ilaro-Papalanto Highway Subgrde," LAUTECH J. of Civil and Environmental Studies, 5 (1) (2020) 146-153.
DOI: 10.36108/laujoces/0202/50(0141)
Google Scholar
[31]
A. Adeboje, W. Kupolati, E. Sadiku, J. Ndambuki, C. Kambole, O. Ogunleye, Stabilization of lateritic soil with PPKS for road construction, African J. of Sci., Tech., Innov. and Development, 9(1) (2017) 55-60.
DOI: 10.1080/20421338.2016.1262100
Google Scholar
[32]
S.I. Adedokun, U.N. Nnabugwu, J.R. Oluremi, Geotechnical Stabilization Potential of Cemnt Admixd with RHA on the Crude Oil Pollutd Laterite Soil: A Case Study of Ebendo, Delta State, Nig., LAUTECH J. of Civil and Environmental Studies, 10 (2) (2023) 57-67.
DOI: 10.36108/laujoces/3202.01.0260
Google Scholar
[33]
T. Mashifana, F. Okonta, F. Ntuli, Effect of curing temperature and particle size distribution on UCS of raw and treatd fly ash-lim modifed phosphogypsm wast, IOP Conf. Series: Materials Science and Engineering, 652 (2019) 012044.
DOI: 10.1088/1757-899X/652/1/012044
Google Scholar
[34]
D. Coduto, W. Kitch, M. Yeung, Foundation Design: Principle and Practice, Prentice Hal, Upper Saddle Riv., NJ, USA, 2015.
Google Scholar
[35]
Z.K. Abdalqadir, N.B. Salih, S.J.H. Salih, Using steel slag for stabilizing clayey soil in Sulaiman City-Iraq. J Eng., 26 (7) (2020) 145–157.
DOI: 10.31026/j.eng.2020.07.10
Google Scholar
[36]
A.S. Hirapure, R.S. Dalvi, Enhancement of mechanical properties of expansive clayey soil using steel slag, in: W. Wu, H.S. Yu (Eds) Proceedings of China-Europe conference on geotechnical engineering, Springer International Publishing, Cham, 2018, p.805–808.
DOI: 10.1007/978-3-319-97112-4_180
Google Scholar
[37]
P.E. Tsakiridis, G.D. Papadimitriou, S. Tsivilis, C. Koroneos, Utilization of steel slag for Portland cement clinker production, J. of Hazardus Mats, 152 (2) (2008) 805-811.
DOI: 10.1016/j.jhazmat.2007.07.093
Google Scholar
[38]
S.I. Adedokun, A.C. Apata, A.O. Ogundalu, J.R. Oluremi, A. Oyinlola, O.K. Fagbenro, J.A. Ige, A.O. Adewoye, Evaluation of the Statistical Significance of Compactive Efforts, Slag and Cement on the Geotechnical Features of Laterite Soil, J. of Eng. Studis and Res, 28 (3) (2022) 7-21. doi.org/.
DOI: 10.29081/jesr.v28i3.001
Google Scholar
[39]
K. Givindarajan, S. Ramani, A review on the Choice of Nano-Silica as Soil Stabilizer, Silicon, 14 (2) (2022) 6477-6492.
DOI: 10.1007/s12633-021-01455-z
Google Scholar
[40]
J.R. Oluremi, K. Ishola, Compaction and strength characteristics of lead contaminated lateritic soil treated with eco-friendly biopolymer for use as road foundation mat., Hybrid adv., 5 (2024) 100158.
DOI: 10.1016/j.hybadv.2024.100158
Google Scholar
[41]
J.E. Sani, R.K. Etim, A. Joseph, Compaction behavior of lateritic soil–CaCl mixtures, Geotech. Geol. Eng. 37 (2019) 2343–2362.
DOI: 10.1007/s10706-018-00760-6
Google Scholar
[42]
S.I. Adedokun, O.M. Osuolale, A.C. Apata, A.A.H. Elsaigh, B.D. Ikotun, J.R. Oluremi, Geotechnical Beneficiation of the Strength Indices of Lateritic Soil Using Steel Slag and Cement, International Journal of Engineering Research in Africa, 59 (2022) 101-117.
DOI: 10.4028/p-e13k1f
Google Scholar
[43]
S.I. Adedokun, M.A. Anifowose, Optimal Replacement of Granite Modified with Ife Iron and Steel Slag on Strength Properties of Concrete, International Journal of Engineering Research in Africa, 58 (2022) 183-190.
DOI: 10.4028/www.scientific.net/JERA.58.183
Google Scholar
[44]
S. Nasrazadani, S. Hassani, Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries in: Hanbook of Material Failure Analysis with Case Study from Oil and Gas Industry: A.S.H. Makhlouf, M. Aliofkhazraei (Eds.) Butterworth-Heinemann, Elsevier Ltd, (2016), Pp 39-54.
DOI: 10.1016/B978-0-08-100117-2.00010-8
Google Scholar