Microstructural and Mechanical Characteristics of Low-Density Polyethylene Composites Reinforced with Pineapple Leaf Fibres

Article Preview

Abstract:

This study investigates the enhanced mechanical properties of pineapple leaf fibre-reinforced polymer composites and their potential applications in sustainable industries. The objectives were to assess the impact of varying fibre compositions on the microstructural and mechanical properties of the composites. Extracted fibres from pineapple leaves were used as reinforcing materials in a low-density polyethylene matrix with varying mass fraction from 0 wt.% to 12 wt.%. Scanning Electron Microscopy were used to analyse the microstructure, and results reveal a dynamic relationship between fibre content and the composite's mechanical behaviours. Mechanical properties measured all exhibited significant improvements with increasing fibre content, reaching their peaks at 9 wt.% fibre content. These enhancements are attributed to the effective load-bearing capability of the fibres. Beyond this optimal point, a drastic reduction in mechanical properties was observed which might be due to fibre agglomeration and other challenges. Ductility, on the other hand, showed a decreasing trend with increasing fibre content, indicating a trade-off between fibre reinforcement and ductile behaviour. These results offer insightful information for modifying the mechanical characteristics of polymeric composites reinforced with pineapple leaf fibres for potential eco-friendly applications.

You might also be interested in these eBooks

Info:

Pages:

23-38

Citation:

Online since:

May 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Azman, M.R.M. Asyraf, A. Khalina, M. Petrů, C.M. Ruzaidi, S.M. Sapuan, W.B. Wan Nik, M.R. Ishak, R.A. Ilyas and M.J. Suriani. Natural Fibre Reinforced Composite Material for Product Design: A Short Review, Polymers, 13 (2021) 1917.

DOI: 10.3390/polym13121917

Google Scholar

[2] S. Waghmare, S. Shelare, K. Aglawe, and P. Khope, A mini review on fibre reinforced polymer composites, Mater. Today Proc., 54 (2022) 682-689.

DOI: 10.1016/j.matpr.2021.10.379

Google Scholar

[3] N.I. Ibrahim, F.S. Shahar, M.T. Hameed Sultan, A. U. Md Shah, S. N. Azrie Safri, and M. H. Mat Yazik, Overview of Bioplastic Introduction and Its Applications in Product Packaging, Coatings, 11 (2021) 1423.

DOI: 10.3390/coatings11111423

Google Scholar

[4] S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishak, R. A. Ilyas, and M. R. M. Asyraf, "Potential of natural fibre reinforced polymer composites in sandwich structures: A review on its mechanical properties," Polymers, 13 (2021) 1–20.

DOI: 10.3390/polym13030423

Google Scholar

[5] N.H. Bakar, K. Mei Hyie, A. S. Ramlan, M. K. Hassan, and A. Jumahat, Mechanical properties of Kevlar reinforcement in kenaf composites, Applied Mechanics and Materials, 456 (2014) 847–851.

DOI: 10.4028/www.scientific.net/amm.465-466.847

Google Scholar

[6] F. Hanan, M. Jawaid, and P. Md Tahir, Mechanical performance of oil palm/kenaf fibre-reinforced epoxy-based bilayer hybrid composites, J. Nat. Fibers, 17 (2020) 155–167.

DOI: 10.1080/15440478.2018.1477083

Google Scholar

[7] M.Y. Khalid, A. Al Rashid, Z.U. Arif, W. Ahmed, H. Arshad, and A.A. Zaidi, Natural fibre reinforced composites: Sustainable materials for emerging applications, Results Eng., 11 (2021) 100263.

DOI: 10.1016/j.rineng.2021.100263

Google Scholar

[8] A. Gholampour and T. Ozbakkaloglu, A review of natural fibre composites: properties, modification and processing techniques, characterization, applications, J. Mater. Sci., 55 (2020) 829-892.

DOI: 10.1007/s10853-019-03990-y

Google Scholar

[9] S.O. Amiandamhen, M. Meincken, and L. Tyhoda, Natural Fibre Modification and Its Influence on Fibre-matrix Interfacial Properties in Biocomposite Materials, Fibers Polym. 21 (2020) 677-689.

DOI: 10.1007/s12221-020-9362-5

Google Scholar

[10] S. R. Benin, S. Kannan, R.J. Bright, and A. Jacob Moses, A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres, Mater. Today Proc., 33 (2020) 798-805.

DOI: 10.1016/j.matpr.2020.06.259

Google Scholar

[11] M. T. H. Sultan et al., "On impact damage detection and quantification for CFRP laminates using structural response data only," Mech. Syst. Signal Process, 25 (2011) 3135–3152.

DOI: 10.1016/j.ymssp.2011.05.014

Google Scholar

[12] P. Maithil, P. Gupta, and M. L. Chandravanshi, Study of mechanical properties of the natural-synthetic fibre reinforced polymer matrix composite, Mater. Today Proc. (2023).

DOI: 10.1016/j.matpr.2023.01.245

Google Scholar

[13] S. Kangishwar, N. Radhika, A. A. Sheik, A. Chavali, and S. Hariharan, A comprehensive review on polymer matrix composites: material selection, fabrication, and application, Polym. Bull., 80 (2023) 47-87.

DOI: 10.1007/s00289-022-04087-4

Google Scholar

[14] L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, A Review on Natural Fibre Reinforced Polymer Composite and Its Applications, Int. J. Polym. Sci., 1 (2015) 243947.

Google Scholar

[15] H. Jariwala and P. Jain, A review on mechanical behavior of natural fibre reinforced polymer composites and its applications, J. Reinf. Plast. Compos., 38 (2019) 441-453.

DOI: 10.1177/0731684419828524

Google Scholar

[16] R. Kumar, M. I. UI Haq, A. Raina, and A. Anand, Industrial applications of natural fibre-reinforced polymer composites–challenges and opportunities, Int. J. Sustainable Eng., 12 (2019) 212-220.

DOI: 10.1080/19397038.2018.1538267

Google Scholar

[17] R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, and A. Elharfi, Polymer composite materials: A comprehensive review, Compos. Struct., 262 (2021) 113640.

DOI: 10.1016/j.compstruct.2021.113640

Google Scholar

[18] A. Kumar Sharma, R. Bhandari, C. Sharma, S. Krishna Dhakad, and C. Pinca-Bretotean, Polymer matrix composites: A state of art review, Mater. Today Proc., 57 (2022) 2330-2333.

DOI: 10.1016/j.matpr.2021.12.592

Google Scholar

[19] K. Mustapha, R. Ayinla, A. S. Ottan, and T. A. Owoseni, Mechanical properties of calcium carbonate/eggshell particle filled polypropylene Composites, MRS Adv., 5 (2020) 2783-2792.

DOI: 10.1557/adv.2020.323

Google Scholar

[20] K. Mustapha, S. A. Bello, Y. Danyuo, and T. Oshifowora, Uniaxial tensile response of coconut coir fibre-reinforced polyethylene Composites, J. Mater. Eng. Struct., 6 (2019) 15–23.

Google Scholar

[21] T. Syed, A. S. Thelakkadan, and S. Al-Hussain, Date-Palm Fibre as a Reinforcement Filler in Polymer Composites, Advances in Sciences and Engineering, 12, (2020) 78–85.

DOI: 10.32732/ase.2020.12.2.78

Google Scholar

[22] Q. Tarrés and M. Ardanuy, Assessment of the Natural Fibre Reinforced Bio-Polyethylene Composites Flexural Macro and Micromechanical Properties, J. Nat. Fibers, 9 (2022) 15574–15584.

DOI: 10.1080/15440478.2022.2131306

Google Scholar

[23] Astm, "ASTM D638-22: Standard Test Method for Tensile Properties of Plastics," ASTM Standards, (2022).

Google Scholar

[24] ASTM International, Designation: D790 – 17 Standard test methods for flexural properties of unreinforced and reinforced electrical insulating materials, Annual Book of ASTM Standards, (2017).

Google Scholar

[25] ASTM, D785-23-Standard Test Method for Rockwell Hardness of Plastics and Electrical Insulating, Annual Book of ASTM Standards, (2023).

Google Scholar

[26] K. Mustapha, E. Annan, S. T. Azeko, M. G. Zebaze Kana, and W. O. Soboyejo, Strength and fracture toughness of earth-based natural fibre-reinforced composites," J. Compos. Mater., 50 (2016) 1145–1160.

DOI: 10.1177/0021998315589769

Google Scholar

[27] M. W. Tham, M.N. Fazita, H.P.S. Abdul Khalil, N.Z. Mahmud Zuhudi, M. Jaafar, S. Rizal, and M.M. Haafiz. Tensile properties prediction of natural fibre composites using the rule of mixtures: A review, J. Reinf. Plast. Compos., 38 (2019) 211-248.

DOI: 10.1177/0731684418813650

Google Scholar

[28] G. Daissè, M. Marcon, M. Zecchini, and R. Wan-Wendner, Cure-dependent loading rate effects on strength and stiffness of particle-reinforced thermoset polymers, Polymer 259 (2022).

DOI: 10.1016/j.polymer.2022.125326

Google Scholar

[29] S.A. Hallad, S.V. Ganachari, M.E.M. Soudagar, N.R. Banapurmath, A.M. Hunashyal, I.M. Fattah, F. Hussain, M.A. Mujtaba, A. Afzal, M.S. Kabir and A. Elfasakhany. Investigation of flexural properties of epoxy composite by utilizing graphene nanofillers and natural hemp fibre reinforcement, Polym. Polym. Compos., 30 (2022).

DOI: 10.1177/09673911221093646

Google Scholar

[30] N.H. Mostafa, Z.N. Ismarrubie, S.M. Sapuan, and M.T.H. Sultan, The influence of equi-biaxially fabric prestressing on the flexural performance of woven E-glass/polyester-reinforced composites, J. Compos. Mater., 50 (2015) 3385–3393.

DOI: 10.1177/0021998315620478

Google Scholar

[31] L.F. Hart, J.E. Hertzog, P.M. Rauscher, B.W. Rawe, M.M. Tranquilli, and S.J. Rowan, Material properties and applications of mechanically interlocked polymers, Nat. Rev. Mater., 6 (2021) 508-530.

DOI: 10.1038/s41578-021-00278-z

Google Scholar

[32] I. S. Abbood, S. A. Odaa, K. F. Hasan, and M. A. Jasim, Properties evaluation of fibre reinforced polymers and their constituent materials used in structures - A review, Mater. Today Proc., 43 (2021) 1003-1008.

DOI: 10.1016/j.matpr.2020.07.636

Google Scholar

[33] F. Serra-Parareda, Q. Tarrés, F. X. Espinach, F. Vilaseca, P. Mutjé, and M. Delgado-Aguilar, Influence of lignin content on the intrinsic modulus of natural fibres and on the stiffness of composite materials, Int. J. Biol. Macromol., 155 (2020) 81-90.

DOI: 10.1016/j.ijbiomac.2020.03.160

Google Scholar

[34] S. Djellali, N. Haddaoui, T. Sadoun, A. Bergeret, and Y. Grohens, Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends, Iran. Polym. J., 22 (2013) 245-257.

DOI: 10.1007/s13726-013-0126-6

Google Scholar

[35] V. Mahesh, S. Joladarashi, and S.M. Kulkarni, Damage mechanics and energy absorption capabilities of natural fibre reinforced elastomeric based bio composite for sacrificial structural applications, Def. Technol., 17 (2021) 161-176.

DOI: 10.1016/j.dt.2020.02.013

Google Scholar

[36] M.S. Anbupalani, C.D. Venkatachalam, and R. Rathanasamy, Influence of coupling agent on altering the reinforcing efficiency of natural fibre-incorporated polymers – A review, J. Reinf. Plast. Compos., 39 (2020) 520-544.

DOI: 10.1177/0731684420918937

Google Scholar

[37] J.Y. Boey, S.B. Yusoff, and G.S. Tay, A review on the enhancement of composite's interface properties through biological treatment of natural fibre/lignocellulosic material, Polym. Polym. Compos., 30 (2022).

DOI: 10.1177/09673911221103600

Google Scholar

[38] H. Wang, H. Memon, E.A.M. Hassan, M.S. Miah, and M.A. Ali, Effect of jute fibre modification on mechanical properties of jute fibre composite, Materials, 12 (2019) 1226.

DOI: 10.3390/ma12081226

Google Scholar

[39] A. Hussain, J. Calabria-Holley, M. Lawrence, M.P. Ansell, Y. Jiang, D. Schorr and P. Blanchet. Development of novel building composites based on hemp and multi-functional silica matrix, Composites, Part B, 156 (2019) 266-273.

DOI: 10.1016/j.compositesb.2018.08.093

Google Scholar

[40] V. Goyat, G. Ghangas, S. Sirohi, A. Kumar, and J. Nain, A review on mechanical properties of coir-based composites, Mater. Today Proc., 62 (2022) 1738-1745.

DOI: 10.1016/j.matpr.2021.12.252

Google Scholar

[41] N. L. Feng, S. D. Malingam, C. W. Ping, and N. Razali, Mechanical properties and water absorption of kenaf/pineapple leaf fibre-reinforced polypropylene hybrid composites, Polym. Compos., 41 (2020) 1255-1264.

DOI: 10.1002/pc.25451

Google Scholar

[42] R. M. N. Arib, S. M. Sapuan, M. M. H. M. Ahmad, M. T. Paridah, and H. M. D. Khairul Zaman, Mechanical properties of pineapple leaf fibre reinforced polypropylene composites, Mater. Des., 27 (2006) 391-396.

DOI: 10.1016/j.matdes.2004.11.009

Google Scholar

[43] T. Singh, C. I. Pruncu, B. Gangil, V. Singh, and G. Fekete, Comparative performance assessment of pineapple and Kevlar fibres-based composites, J. Mater. Res. Technol., 9 (2020) 1491-1499.

DOI: 10.1016/j.jmrt.2019.11.074

Google Scholar