High-Pressure Structural Phase Transition in MgxCd1-xO Compounds

Article Preview

Abstract:

The high-pressure technique is useful to understand physical properties because the technique can directly control bond length and phase transition. As a general trend, the pressure-induced phase transition causes an increase of coordination number with a drastic change of their physical properties. Here, we attempt to explore the pressure-induced phase transitions from the sixfold-coordinated NaCl structure (B1) to the eightfold-coordinated CsCl structure (B2) in MgxCd1−xO by applying an effective interionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. Assuming that both the ions are polarizable, the Slater-Kirkwood variational method is employed to estimate the vdW coefficients for parent compounds. The estimated values of the phase transition pressure (Pt) increase with Mg concentration. The vast volume discontinuity in pressure volume phase diagram identifies the structural phase transition from B1 to B2 structure. The results obtain from the present calculations requires the complete understanding of many physical interactions that are essential to ternary oxides, containing elements with size and chemical mismatch, will lead to a consistent explanation of the documented structural properties.

You might also be interested in these eBooks

Info:

Pages:

77-84

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Stewart McWilliams, Dylan K. Spaulding, Jon H. Eggert, Peter M. Celliers, Damien G. Hicks, Raymond F. Smith, Gilbert W. Collins and Raymond Jeanloz, Science 338 (2012) 1330.

DOI: 10.1126/science.1229450

Google Scholar

[2] C. H. Bates, W. B. White and R. Roy, Science 137 (1962) 993.

Google Scholar

[3] A. Mujica, Angel Rubio, A. Munoz and R.J. Needs, Rev. Mod. Phys. 75 (2003) 863.

Google Scholar

[4] Haozhe Liu, Ho-kwang Mao, Maddury Somayazulu, Yang Ding, Yue Meng, and Daniel Häusermann, Phys. Rev. B 70 (2004) 094114.

Google Scholar

[5] Roberto J. Guerrero-Moreno and Noboru Takeuchi, Phys. Rev. B 66 (2002) 205205.

Google Scholar

[6] K. B. Joshi, U. Paliwal, K.L. Galav, D.K. Trivedi, and T. Bredow, J. Solid State Chem. 204 (2013) 367.

Google Scholar

[7] A. Aïdouni, A. Zaoui and M. Ferhat, Phys. Stat. Solidi (b) 251 (2014) 1426.

Google Scholar

[8] Feng Peng, Qiang Liu, Hongzhi Fu and Xiangdong Yang, Solid Stat. Commun. 148 (2008) 6.

Google Scholar

[9] A. Schleife, F. Fuchs, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73 (2006) 245212.

Google Scholar

[10] Wenxia Feng, Shouxin Cui, Haiquan Hu, Guiqing Zhang, Zengtao Lv and Zizheng Gong, Phys. Stat. Solidi (b) 247 (2010) 2202.

Google Scholar

[11] Gen-Quan Li, Cheng Lu, Xing-Qiang Yang, Shao-Wu Xiao, Ai-Hua Wang, Li Wang and Xiao-Ming Tan, High Pres. Res. 30 (2010) 679.

Google Scholar

[12] K. J. Chang and M. L. Cohen, Phys. Rev. B 30 (1984) 4774.

Google Scholar

[13] M. Causa, R. Dovesi, C. Pisani and C. Roetti, Phy. Rev. B 33 (1986) 1308.

Google Scholar

[14] J. E. Jaffe, J. A. Snyder, Z. Lin and A. C. Hess, Phys. Rev. B 62 (2000) 1660.

Google Scholar

[15] A. N. Baranov, V. S. Stepanyuk, W. Hergert, A. A. Katsnelson, A. Settels, R. Zeller and P. H. Dederichs, Phys. Rev. B 66 (2002) 155117.

DOI: 10.1103/physrevb.66.155117

Google Scholar

[16] D. Alfe, M. Alfredsson, J. Brodholt, M. J. Gillan, M. D. Towler and R. J. Needs, Phys. Rev. B 72 (2005) 014114.

Google Scholar

[17] A. Schleife, F. Fuchs, J. Furthmuller and F. Bechstedt, Phys. Rev. B 73 (2006) 245212.

Google Scholar

[18] Y. Z. Zhu, G. D. Chen, H. Ye, A. Walsh, C. Y. Moon and S. H. Wei, Phys. Rev. B 77 (2008) 245209.

Google Scholar

[19] A. Gueddim, N. Bouarissa and A. Villesuzanne, Phys. Scr. 80 (2009) 055702.

DOI: 10.1088/0031-8949/80/05/055702

Google Scholar

[20] Z. J. Liu, Y. X. Du, X. L. Zhang, J. H. Qi, L. N. Tian and Y. Guo, Phys. Status Solidi (b) 247 (2010) 157.

Google Scholar

[21] O. L. Andreson and P. J. Andreatch, J. Am. Ceram. Soc. 49 (1966) 404.

Google Scholar

[22] Y. Fei, Am. Miner. 84 (1999) 272.

Google Scholar

[23] F. Bertram, S. Giemsch, D. Forster, J. Christen, R. Kling, C. Kirchner and A. Waag, Appl. Phys. Lett. 88 (2006) 61915.

DOI: 10.1063/1.2172146

Google Scholar

[24] J. W. Chiou, et al., Appl. Phys. Lett. 89 (2006) 43121.

Google Scholar

[25] D. W. Hafemeister and W. H. Flygare, J. Chem. Phys. 43 (1965) 795.

Google Scholar

[26] Dinesh Varshney, N. Kaurav, P. Sharma, S. Shah and R. K. Singh, Phase Trans. 77 (2004) 1075.

Google Scholar

[27] PK Jha and SP Sanyal, Physical Review B 52 (1995), 15898.

Google Scholar

[28] PK Jha and P Sanyal, Indian Journal of Pure and Applied Physics 31 (1993), 469-473.

Google Scholar

[29] PK Jha, SP Sanyal, Physica B: Condensed Matter 216 (1995), 125-131.

Google Scholar

[30] PK Jha, SP Sanyal, Physica C: Superconductivity 271 (1996) 6-10.

Google Scholar

[31] J. C. Slater and J. G. Kirkwood, Phys. Rev. 37 (1931) 682.

Google Scholar

[32] R. J. Euiot, R. A. Leath, in: G.K. Horton and A.A. Maraduddin (Eds. ), Dynamical Properties of Solids, Academic Press, New York, Vol. II 386 (1976).

Google Scholar

[33] L. Vegard, Z. Phys B 5 (1921) 17.

Google Scholar

[34] F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 3 (1994) 244.

Google Scholar