Theoretical Analysis of the Structural Phase Transformation and Elastic Properties in the ZrN under High Pressure

Article Preview

Abstract:

We report a phenomenological model based calculation of pressure-induced structural phase transition and elastic properties of ZrN compound. Gibb’s free energy is obtained as a function of pressure by applying an effective interionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. From the present study, we predict a structural phase transition from NaCl structure (B1) to the CsCl structure (B2). The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of NaCl type structure family.

You might also be interested in these eBooks

Info:

Pages:

101-107

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. -H. Jhi, J. Ihm, S.G. Louie, M.L. Cohen, Nature (London) 399 (1999) 132.

Google Scholar

[2] P.F. McMillan, Nat. Mater. 1 (2002) 19.

Google Scholar

[3] T. Maruyama, T. Morishita, Appl. Phys. Lett. 69 (1996) 890.

Google Scholar

[4] S. Yamanaka, K. Hotehama, H. Kawaji, Nature (London) 392 (1998) 580.

Google Scholar

[5] A. Zerr, G. Miehe, R. Boehler, Nat. Mater. 2 (2003) 185.

Google Scholar

[6] M. Chhowalla, H.E. Unalan, Nat. Mater. 4 (2005) 317.

Google Scholar

[7] K. Suzuki, T. kaneko, H. Yoshida, H. Morita, H. Fujimori, J. Alloys Compd. 224 (1995) 232.

Google Scholar

[8] H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes Publishing, New Jersey, (1996).

Google Scholar

[9] Z. Wu, X. Chen, V.V. Struzhkin, R.E. Cohen, Phys. Rev. B 71 (2005) 214103.

Google Scholar

[10] W. Chen and J. Z. Jiang, J. Alloys Compd. 499 (2010) 243.

Google Scholar

[11] X. Chen, V. V. Struzhkin, Z. Wu,M. Somayazulu, J. Qian, S. Kung, A. N. Christensen, Y. Zhao, R. E. Cohen, H. -K. Mao and R. J. Hemley, Proc. Natl. Acad. Sci. Am. 102 (2005) 3198.

DOI: 10.1073/pnas.0500174102

Google Scholar

[12] E. Zhao, J. P. Wang, J. Meng and Z. J. Wu, Comput. Mater. Sci. 47 (2010) 1064.

Google Scholar

[13] A. M. Hao, T. J. Zhou, Y. Zhu, X. Y. Zhang and R. P. Liu, Mater. Chem. Phys. 99 (2011) 129.

Google Scholar

[14] A. T. Asvini Meenaatci, R. Rajeswarapalanichamy and K. Iyakutti, J. At. Mol. Sci. 4 (2013) 321.

Google Scholar

[15] Yan-Jun Hao, Hai-Sheng Ren, Bo Zhu, Jun Zhu, Jian-Ying Qu and Long-Qing Chen, Solid State Sciences 17 (2013) 1.

Google Scholar

[16] S.K. Gupta, S.D. Gupta, H.R. Soni, V. Mankad, P.K. Jha, Materials Chemistry and Physics 143 (2), 503(2014).

Google Scholar

[17] S.D. Gupta, S.K. Gupta, P.K. Jha, Computational Materials Science 49 (4), 910(2010).

Google Scholar

[18] R. K. Singh, Phys. Rep. 85 (1982) 259.

Google Scholar

[19] D. W. Hafemeister and W. H. Flygare, J. Chem. Phys. 43 (1965) 795.

Google Scholar

[20] M. P. Tosi, Solid State Phys. 16 (1964) 1.

Google Scholar

[21] Netram Kaurav, Phys. Scr. 88 (2013) 015604.

Google Scholar

[22] J. C. Slater and J. G. Kirkwood, Phys. Rev. 37 (1931) 682.

Google Scholar

[23] F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 3 (1994) 244.

Google Scholar

[24] N. Kaurav, Y. K. Kuo, G. Joshi, K. K. Choudhary and D. Varshney, High Pressure Res. 28 (2008) 651.

Google Scholar