Low Frequency Study of Te2 Cluster and CdSeTe Nanoparticles Embedded in Borosilicate Glass

Article Preview

Abstract:

The objective of this paper is to study the low frequency acoustic vibration of Te2 cluster and CdSeTe nanoparticle embedded in borosilicate glass matrix. Lamb’s model is used to predict the occurrence of various mode to support the experimental observations by considering the elastic continuum model and fixed boundary condition. The presence of medium significantly affects the phonon peaks and results into the broadening of the modes. The linewidth is found to depend inversely on the size, similar to that reported experimentally.

You might also be interested in these eBooks

Info:

Pages:

120-124

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Kriebig and M. Vollmes, Optical Properties of Metal Clusters (Springer, Berlin, 1985); U. Kriebig and U. Genzel, Surf. Sci. 156, 678 (1985).

Google Scholar

[2] J. H. Hodak, I. Martini, and G. V. Hartland, J. Chem. Phys. 108, 9210 (1998).

Google Scholar

[3] M. Nisoli, S. De Silvestri, A. Caralleri, A. M. Malvezzi, A. M. Malvezzi, A. Stella, G. Lanzani, P. Cheyssac, and R. Kofman, Phys. Rev. B 55, R13424 (1997).

DOI: 10.1103/physrevb.55.r13424

Google Scholar

[4] L. Mingce, J. Jingjing, L. Yan, C. Ruqiong, Z. Liying, and W. Cai, NanoMicro Lett. 3, 171 (2011).

Google Scholar

[5] W. Jiang, S. C. Mangham, V. R. Reddy, M. O. Manasreh, and B. D. Weaver, Sol. Energy Mater. Sol. Cells 102, 44 (2012).

Google Scholar

[6] A. M. Shalaka, P. R. Chaudhari, V. B Shidore, and S. P Kamble, NanoMicro Lett. 3, 189 (2011).

Google Scholar

[7] D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, Phys. Rev. Lett. 45, 355 (1980).

Google Scholar

[8] H. Portales, N. Goubet, L. Saviot, P. Yang, S. Sirotkin, E. Duval, A. Mermet, and M. Pileni, ACS Nano 4, 3489 (2010).

DOI: 10.1021/nn1005446

Google Scholar

[9] R. Marty, A. Arbouet, C. Girard, A. Mlayah, V. Paillard, V. K. Lin, S. L. Teo, and S. Tripathy, Nano Lett. 11, 3301 (2011).

DOI: 10.1021/nl201668t

Google Scholar

[10] M. Talati and P. K. Jha, Phys. Rev. E 73, 011901 (2006).

Google Scholar

[11] V Mankad, P.K. Jha, TR Ravindran, J. Appl. Phys 113, 074303 (2013).

Google Scholar

[12] M. Talati, P.K. Jha, Physica E 28, 171 (2005).

Google Scholar

[13] Wang X Y, Qu L H, Zhang J Y, Peng X G and Xiao M, Nano Lett. 3, 1103 (2003).

Google Scholar

[14] Steckel J S, Zimmer J P, Sullivan S C, Stott N E, Bulovic V and Bawendi MG, Angew. Chem. Int. Edn 43, 2154 (2004).

Google Scholar

[15] V. Mankad, S. K. Gupta, P. K. Jha, N. N. Ovsyuk, and G. A. Kachurin, J. Appl. Phys. 112, 054318 (2012).

Google Scholar

[16] P. K. Jha and M Talati, MRS Proceedings, 791, Q8. 11 (2003).

Google Scholar

[17] H. Lamb, Proc. London Math. Soc. 13, 189 (1982).

Google Scholar

[18] L. Saviot, D. B. Murray, M. C. Marco de Lucas, Phys. Rev. B 69, 113402 (2004).

Google Scholar

[19] L. Saviot and D. B. Murray, Phy. Rev. Lett. 93, 055506 (2004); Phys. Rev. B 69, 094305 (2004).

Google Scholar

[20] E. Duval, Phys. Rev. B 46, 5795 (1992).

Google Scholar