Effect of Ru Substitution on Temperature Coefficient of Resistance and Magnetoresistance Properties of Nd0.67Sr0.33MnO3

Article Preview

Abstract:

The effect of Ru substitution on temperature coefficient of resistance (TCR) and electrical transport properties of Nd0.67Sr0.33Mn1-xRuxO3 (with x = 0, 0.05 and 0.1) manganites prepared by solid state reaction route are studied. Ru substitution at Mn sites leads to reduction in TP and increase the overall MR. The electrical transport mechanisms of these compounds are investigated by using different theoretical models, for temperatures below and above TP. The maximum value of TCR of Nd0.67Sr0.33Mn1-xRuxO3 (x= 0.05 and 0.1) are found to be higher compared to pristine compound. For memory device and bolometer IR detectors application point of view, all samples show the maximum magnetoresistance (MR) of 81 % at 5 T applied magnetic field, while the temperature coefficient of resistance (TCR) is found to ~17% K-1.

You might also be interested in these eBooks

Info:

Pages:

85-92

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. N. R. Rao & B. Raveau, Colossal Magnetoresistance, Charge ordering and Related Properties and Manganese Oxides, first ed., World Scientific, Singapore, (1998).

DOI: 10.1142/3605

Google Scholar

[2] A. P. Ramirez, Colossal magnetoresistance, J. Phys: Condens. Matter. 9 (1997) 8171-8199.

DOI: 10.1088/0953-8984/9/39/005

Google Scholar

[3] M. Talati and P. K. Jha, Pressure-dependent phonon properties of La0. 7Sr0. 3MnO3, Phys. Rev. B 74 (2006) 134406-1-134406-9.

Google Scholar

[4] A. Khare, R. J. Choudhary, and S. P. Sanyal, Structural, electrical and magnetic properties of Ce doped La0. 7Ca0. 3MnO3 thin films, J. Appl. Phys. 112 (2012) 023714-1-023714-8.

DOI: 10.1063/1.4739306

Google Scholar

[5] A. Khare, A. Bodhaye, D. Bhargava, R. J. Choudhary, S. P. Sanyal, Phys. B: Cond. Matt. 404 (2009) 3602–3607.

Google Scholar

[6] NAstik, S. Patil, P Bhargava, P. K Jha, Synthesis and characteristic of nanocrystalline La0. 7Sr0. 3MnO3 manganites by solid state reaction route, AIP Proceed. 1728 (2016) 020467.

DOI: 10.1063/1.4946518

Google Scholar

[7] M Talati, PK Jha, Structure dependent phonon properties of LaMnO 3, Comput. Mat. science 37 (2006), 64.

Google Scholar

[8] V. Sridharan, L. Seetha Lakshmi, R. Govindraj, R. Nithya, D.V. Natarajan, T.S. Radhakrishnan, Transport and thermal properties of La0. 67Ca0. 33Mn1−xMxO3 (M=Fe, Zr and Hf), J. Allo. Comp. 326 (2001) 65-68.

DOI: 10.1016/s0925-8388(01)01233-6

Google Scholar

[9] L. Seethalakshmi, V. Sridharan, D. V. Natarajan, R. Rawat, S. Chandra, V. S. Sastry, T. S. Radhakrishnan, Structure, transport and magnetism of La0. 67Ca0. 33Mn1−xTaxO3, J. Magn. Magn. Mater. 279 (2004) 41-50.

Google Scholar

[10] B. Raveau, The crucial role of mixed valence in the magnetoresistance properties of manganites and cobaltites, Phil. Trans. R. Soci. A 366 (2008) 83-92.

DOI: 10.1098/rsta.2007.2141

Google Scholar

[11] N. Paunovic, Z. V. Popovic, A. Cantarero, F. Sapina, Influence of Mn Site Doping on Electrical Resistivity of Polycrystalline La1-yAyMn1-xBxO3 (A=Ba, Sr; B=Cu, Cr, Co) Manganites, Sci. of Sint. 40 (2008) 55-61.

DOI: 10.2298/sos0801053p

Google Scholar

[12] T. M. Tank, D. Bhargava, V. Sridharan, S. S. Samatham, V. Ganesan, S. P. Sanyal, Influence of Mn Site Substitution on Electrical Resistivity and Magnetoresistance Properties of Rare Earth Manganite, Adv. Mater. Res. 1047 (2014) 131-139.

DOI: 10.4028/www.scientific.net/amr.1047.123

Google Scholar

[13] C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure, Phys. Rev. 82 (1951) 403–405.

DOI: 10.1103/physrev.82.403

Google Scholar

[14] D. C. Krishna, Y. K. Lakshmi, B. Sreedhar, P. V. Reddy, Magnetic transport behavior of nanocrystalline Nd0. 67A0. 33MnO3 (A=Ca, Sr and Ba), Sol. Sta. Sci. 11 (2009) 1312–1318.

DOI: 10.1016/j.solidstatesciences.2009.04.002

Google Scholar

[15] G. Venkataiah, P. V. Reddy, Structural, magnetic and magnetotransport behavior of some Nd- based perovskite manganites, Sol. Sta. Comm. 136 (2005) 114–119.

DOI: 10.1016/j.ssc.2005.04.014

Google Scholar

[16] M. M. Seikh, L. Sudheendra, and C. N. R. Rao, Magnetic properties of La0. 5-xLnxSr0. 5MnO3 (Ln=Pr, Nd, Gd and Y), J. Sol. Sta. Chem. 177 (2004) 3633–3639.

DOI: 10.1016/j.jssc.2004.06.004

Google Scholar

[17] T. P. Dhakal, K. Miyoshi, K. Fujiwara, J. Takeuchi, Magnetotransport properties of the perovskite Nd0. 67Sr0. 33Mn1-xCoxO3 single crystals, J. Magn. Magn. Mater. 226–230 (2001) 824–825.

DOI: 10.1016/s0304-8853(00)01023-4

Google Scholar

[18] J. Takeuchi, S. Hirahara, T. P. Dhakal, K. Miyoshi, K. Fujiwara, Colossal magnetoresistance of perovskite Nd0. 67Sr0. 33Mn1-xFexO3 single crystals, J. Magn. Magn. Mater. 226–230 (2001) 884–885.

DOI: 10.1016/s0304-8853(00)00637-5

Google Scholar

[19] Y. Tokura, Critical features of colossal magnetoresistive manganites, Rep. Prog. Phys. 69 (2006) 797-851.

DOI: 10.1088/0034-4885/69/3/r06

Google Scholar

[20] A. Heredia, F. J. De la Hidalga, A. Torres, A. Jaramillo, Low Temperature Electronics and Low Temperature Co-fired Ceramic Based Electronic Devices, The Electrochemical Society, Orlando, Florida, 2003, pp.881-882.

Google Scholar

[21] T. M. Tank, C. M. Thaker, R. S. Chhatrala,V. Ganesan, S. P. Sanyal, Enhancement of Temperature and Field Coefficient of Resistance in CSD Grown Nanostructure La0. 7Ca0. 3MnO3 Thin Films, J. Nano Res. 24 (2013) 155-162.

DOI: 10.4028/www.scientific.net/jnanor.24.155

Google Scholar

[22] T. M. Tank, A. Bodhaye, Ya. M. Mukovskii, S. P. Sanyal, Transport, Magnetic, and Thermal Properties of La0. 7Ca0. 24Sr0. 06MnO3 Single Crystal, Adv. Conde. Matt. Phy. 2013 (2013) 305308-305311.

Google Scholar

[23] A. P. Ramirez, Colossal magnetoresistance, J. Phys: Condens. Matter. 9 (1997) 8171-8199.

DOI: 10.1088/0953-8984/9/39/005

Google Scholar

[24] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystall. Sect. A 32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[25] S. S. Manoharan, H. L. Ju, K. M. Krishnan, Unusual substitutional properties of Ru in the La0. 7Sr0. 3Mn1 - xRuxO3 system, J. Appl. Phys. 83 (1998) 7183-7185.

DOI: 10.1063/1.367630

Google Scholar

[26] D. Bhargava, T. M. Tank, A. Bodhaye, S. P. Sanyal, Transport and Magneto-transport Properties of Ln0. 67Sr0. 33MnO3 (Ln = La, Pr, Nd), Trans. Indi. Inst. Met. 65 (2012) 443-447.

DOI: 10.1007/s12666-012-0155-4

Google Scholar

[27] D. Bhargava, T. M. Tank, R. Rawat, S. P. Sanyal, Transport and Magnetic Properties of Ru substituted NdMnO3, AIP Conf. Proc. 1536 (2013) 865-866.

DOI: 10.1063/1.4810502

Google Scholar

[28] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3, Phys. Rev. B. 51 (1995) 14103- 14109.

Google Scholar

[29] D. Emin and T. Holstein, Adiabatic Theory of an Electron in a Deformable Continuum Phys. Rev. Lett. 36 (1976) 323-326.

DOI: 10.1103/physrevlett.36.323

Google Scholar

[30] V. G. Malyarov, Uncooled thermal IR arrays, J. Opt. Tech. 69 (750–760) (2002).

DOI: 10.1364/jot.69.000750

Google Scholar

[31] S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, Characterization and optimization of infrared poly SiGe bolometers, IEEE Trans. Elect. Devi. 46 (675–682) (1999).

DOI: 10.1109/16.753700

Google Scholar

[32] C. Chen, X. Yi, J. Zhang, and X. Zhao, Linear uncooled microbolometer array based on VOx thin films, Infr. Phy. Tech. 42 (87–90) (2001).

DOI: 10.1016/s1350-4495(01)00058-5

Google Scholar

[33] R. J. Choudhary, A. S. Ogale, S. R. Shinde, S. Hullavarad, S. B. Ogale, R. N. Bathe, S. I. Patil, R. Kumar, Appl. Phys. Lett. 84 (2004) 3846-3849.

DOI: 10.1063/1.1748837

Google Scholar

[34] Y. L. Chang, Q. Huang, and C. K. Ong, Effect of Fe doping on the magnetotransport properties in Nd0. 67Sr0. 33MnO3 manganese oxides, J. Appl. Phy. 91 (2002) 789-793.

DOI: 10.1063/1.1421044

Google Scholar

[35] Y. L. Chang, C. K. Ong, Iron induced magnetic, transport and magnetoresistance behavior in Nd0. 67Sr0. 33MnO3 epitaxial films, Appl. Phys. A 79 (2004) 2103-2107.

DOI: 10.1007/s00339-004-2895-4

Google Scholar