Microstructure Evolution and Mossbauer Spectroscopy Research of Nanostructured Ni3 Fe Intermetallic

Article Preview

Abstract:

Nanocrystalline Ni75Fe25 (Ni3Fe) powders were prepared by mechanical alloying process using a vario-planetary high-energy ball mill. The intermetallic Ni3Fe formation and different physical properties were investigated, as a function of milling time, t, (in the range 6 to 96 h range), using X-Ray Diffraction (XRD) and Mössbauer Spectroscopy techniques. X-ray diffraction were performed on the samples to understand the structural characteristics and get information about elements and phases present in the powder after different time of milling. The refinement of XRD spectra revealed the complete formation of fcc Ni (Fe) disordered solid solution after 24 h of milling time, the Fe and Ni elemental distributions are closely correlated. With increasing the milling time, the lattice parameter increases and the grains size decreases. The Mössbauer experiments were performed on the powders in order to follow the formation of Ni3Fe compound as a function of milling time. From the adjustment of Mössbauer spectra, we extracted the hyperfine parameters. The evolution of hyperfine magnetic field shows that the magnetic disordered Ni3Fe phase starts to form from 6 h of milling time and grow in intensity with milling time. For the milling time more than 24 h, only the Ni3Fe disordered phase is present with a mean hyperfine magnetic field of about 29.5 T. The interpretation of the Mossbauer spectra confirmed the results obtained by XRD.

You might also be interested in these eBooks

Info:

Pages:

1-13

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Jartych, J. K. Zurawicz, D. Oleszak, M. Pekala, Xray diffraction, magnetization and Mossbauer studies of nanocrystalline Fe-Ni alloys prepared by low- And high-energy ball milling, J. Magn. Magn. Mater. 208(3) (2000) 221-230.

DOI: 10.1016/s0304-8853(99)00543-0

Google Scholar

[2] H. Gleiter, Nanostructured materials basic concepts and microstructure, J. Acta Mater. 48 (2000) 1-29.

Google Scholar

[3] H.N. Frase, R.D. Shull, L.B. Hong, T.A. Stephens, Z.Q. Gao, B. Fultz, Soft magnetic properties of nanocrystalline Ni3Fe and Fe75Al12.5Ge12.5, J. Nanostruc. Mater. 11 (1999) 987-993.

DOI: 10.1016/s0965-9773(00)00430-x

Google Scholar

[4] C.B. Jiang, M. Venkatesan, J.M.D. Coey, Magnetic and structural properties of SmCo7AxTix magnets, J. Magn. Magn. Mater. 236 (2001) 49-55.

Google Scholar

[5] G. Herzer, Nanocrystalline soft magnetic materials, J. Magn. Magn. Mater. 112 (1992) 258.

Google Scholar

[6] J. S. Benjamin, Mechanical alloying, J. Sci. Am. 234 (1976) 40.

Google Scholar

[7] J.J. Zhong, Y.G. Guo, J.G. Zhu, Z. W. Lin, Characteristics of soft magnetic composite material under rotating magnetic fluxes, J. Magn. Magn. Mater. 299 (2006) 29-34.

DOI: 10.1016/j.jmmm.2005.03.016

Google Scholar

[8] B. V. Neamtu, I. Chicinas, O. Isnard, F. Popa, V. Popa, Influence of wet milling conditions on the structural and magnetic properties of Ni3Fe nanocrystalline intermetallic compound, J. Intermet. 19 (2011) 19-25.

DOI: 10.1016/j.intermet.2010.09.004

Google Scholar

[9] R. Hamzaoui, O. Elkedim, N. Fenineche, E. Gaffet, J. Craven, Structure and magnetic properties of nanocrystalline mechanically alloyed Fe- 10% Ni and Fe-20% Ni, J. Mater. Sci. Eng. 360 (2003) 299-305.

DOI: 10.1016/s0921-5093(03)00460-x

Google Scholar

[10] R. Koohkan, S. Sharafi, H. Shokrollahi, K. Janghorban, Preparation of nanocrystalline Fe-Ni powders by mechanical alloying used in soft magnetic composites, J. Magn. Magn. Mater. 320 (2008) 1089-1094.

DOI: 10.1016/j.jmmm.2007.10.033

Google Scholar

[11] I. Chicinaş, V. Pop, O. Isnard, J.M. Le Breton, J. Juraszek, Synthesis and magnetic properties of Ni3Fe intermetallic compound obtained by mechanical alloying, J. All. Comp. 352 (2003) 34-40.

DOI: 10.1016/s0925-8388(02)01135-0

Google Scholar

[12] G. Herzer, Nanocrystalline soft magnetic alloys, in: K.H.J. Buschow, first ed., Handbook of Magnetic Materials, vol. 10, Elsevier Science B.V, 1997, p.415.

DOI: 10.1016/s1567-2719(97)10007-5

Google Scholar

[13] L. Lutterotti, MAUD CPD Newsletter (IUCr), No. 24 (2000).

Google Scholar

[14] D.B. Wiles and R.A. Young, A new computer program for Rietveld analysis of X-ray powder diffraction patterns, J. Appl. Cryst. 14 (1981) 149-151.

DOI: 10.1107/s0021889881008996

Google Scholar

[15] L. François, Équations différentielles d'ordre un et applications, PhD thesis, University of Caen, 17 June (2009).

Google Scholar

[16] S. Ouhenia, Simulation des diagrammes de diffraction par la méthode combinée : application aux systèmes CaCO3, PhD thesis, University of Caen, 15 December (2008).

Google Scholar

[17] JCPDS Card No. 38 0419.

Google Scholar

[18] A. Kaibi, A. Guittoum, N. Fenineche, N. Souami and M. Kechouane, Sens. Structural, Microstructural and magnetic properties of nanocrystalline Ni75Fe25 compound produced by mechanical alloying, J. Sens. Lett. 11 (2013) 1-7.

DOI: 10.1166/sl.2013.3069

Google Scholar

[19] B. H. Meeves, G. S. Collins, Formation of the Ni3Fe by mechanical alloying, J. Hyperfine Interactions, 92 (1994) 955-958.

DOI: 10.1007/bf02065718

Google Scholar

[20] C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, M. Saravana-kumar, Order–disorder studies and magnetic properties of mechanically alloyed nanocrystalline Ni3Fe alloy, J. Mater. Sci. Eng. A304-306 (2001) 408-412.

DOI: 10.1016/s0921-5093(00)01518-5

Google Scholar

[21] I. Chicinas, V. Pop, O. Isnard, Magnetic properties of Ni3Fe intermetallic compound obtained by mechanical alloying, J. Magn. Magn. Mater. 242–245 (2) (2002) 885-887.

DOI: 10.1016/s0304-8853(01)01332-4

Google Scholar

[22] M. M. L. Castex, J. L. Lebrun, G. Maeder, J. M. Sprauel, Détermination des contraintes résiduelles par diffraction des rayons X, Ecole Nationale Supérieure d'Arts et Métiers, Publication Scientifique et Technique, 22 (1981).

DOI: 10.51257/a-v3-in8

Google Scholar

[23] Information on http://www.physiqueindustrie.com/residual_stress.php / consult 1.10.(2007).

Google Scholar

[24] C. Janot, L'effet Mössbauer et ses applications, Collection de Monographies de Physique, Masson et Cie (ed.), Paris, (1972).

Google Scholar