Phase Separation Effect in Gelation of 3DOM Bioactive Glass

Article Preview

Abstract:

The quaternary phase bioactive glasses (SiO2-CaO-Na2O-P2O5) were synthesized by the sol-gel process. Pluronic P123, using surfactant as structure-directing agents as well as phase separation inducers. The obtained bioactive glasses were characterized regarding morphology by using the scanning electron microscopy (SEM). Polymer colloidal crystals (CCTs) as the template component yielded either three-dimensionally ordered macroporous (3DOM) structure or hollow spheres shaped bioactive glass. The other type of morphology generation is related to the polymerization-induced phase separation (PIPS) in the gelation process. The heterogeneous precursor i.e. silica-rich regions caused the microspheres and solvent-rich areas produced micrometer-scale void space in bicontinuos structure. While the lower pH of starting precursor in 45S4P showed stronger precursor-template interactions than the 53S4P by generating the completely hollow spheres structure.

You might also be interested in these eBooks

Info:

Pages:

15-20

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Rámila, F. Balas, M. Vallet-Regí, Synthesis routes for bioactive sol−gel glasses: Alkoxides versus nitrates, Chem. Mater. 14(2) (2002) 542-548.

DOI: 10.1021/cm0110876

Google Scholar

[2] Q.Z. Chen, D. Thompson, A.R. Boccaccini, 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering, Biomaterials. 27(11) (2006) 2414-2425.

DOI: 10.1016/j.biomaterials.2005.11.025

Google Scholar

[3] N.F. Ibrahim, H. Mohamad, S. N. F. M. Noor, N. Ahmad, Melt-derived bioactive glass based on SiO2-CaO-Na2O-P2O5 system fabricated at lower melting temperature, J. Alloys Compd. 732 (2018) 603-612.

DOI: 10.1016/j.jallcom.2017.10.235

Google Scholar

[4] D. C. Bell, K. Zhang, H. Yan, L. F. Francis, A. Stein, Three dimensionally ordered macroporous bioactive glasses. Microsc. Microanal. 8 (S02) (2002) 330-331.

DOI: 10.1017/s1431927602100900

Google Scholar

[5] D. Bellucci, V. Cannillo, A. Sola, A new bioactive glass composition for bioceramic scaffolds, J. Ceram. Sci. and Technol. 1 (2010) 33-40.

Google Scholar

[6] M. Vallet-Regi, Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering, Chem. Eur. J. 12(13) (2006) 5934-5943.

DOI: 10.1002/chem.200600226

Google Scholar

[7] I. Izquierdo-Barba, M. Colilla, M. Vallet-Regi, Nanostructured mesoporous silicas for bone tissue regeneration, J. Nanomater. (2008) 1-14.

DOI: 10.1155/2008/106970

Google Scholar

[8] S. Wang, Ordered mesoporous materials for drug delivery, Microporous and Mesoporous Mater. 117(1) (2009) 1-9.

Google Scholar

[9] H. Yan, C. F. Blanford, W. H. Smyrl, A. Stein, Preparation and structure of 3D ordered macroporous alloys by PMMA colloidal crystal templating, Chem. Commun. 16 (2000) 1477-1478.

DOI: 10.1039/b003147j

Google Scholar

[10] C. Triantafillidis, M.S. Elsaesser, N. Husing, Chemical phase separation strategies towards silica monoliths with hierarchical porosity, Chem. Soc. Rev. 42(9) (2013) 3833-3846.

DOI: 10.1039/c3cs35345a

Google Scholar

[11] K. Nakanishi, T. Amatani, S. Yano, T. Kodaira, Multiscale templating of siloxane gels via polymerization-induced phase separation, Chem. Mater. 20(3) (2007) 1108-1115.

DOI: 10.1021/cm702486b

Google Scholar

[12] S.G. Rudisill, S. Shaker, D. Terzic, R. Maire, B. L. Su, A. Stein, Generalized approach to the microstructure direction in metal oxide ceramics via polymerization-induced phase separation, Inorg. chem. 54(3) (2014) 993-1002.

DOI: 10.1021/ic5023856

Google Scholar

[13] D. Li, Y.S. Lin, V.V. Guliants, Synthesis and characterization of ordered meso-macro-porous silica membranes on a porous alumina support, Tsinghu Sci. Technol. 15(4) (2010) 377-384.

DOI: 10.1016/s1007-0214(10)70076-6

Google Scholar

[14] U. Boonyang, F. Li, A. Stein, Hierarchical structures and shaped particles of bioactive glass and its in vitro bioactivity, J. Nanomater. (2013) 1-6.

DOI: 10.1155/2013/681391

Google Scholar

[15] S. H. Wu, C. Y. Mou, H. P. Lin, Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev. 42 (2013) 3862-3875.

Google Scholar