[1]
Afzaal, M.; Malik, M. A.; O'Brien, P. Preparation of zinc containing materials. New J. Chem. 2007, 31, 2029–(2040).
Google Scholar
[2]
Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860.
DOI: 10.1021/jp066952u
Google Scholar
[3]
Mills, A.; Wang, J. S. Simultaneous monitoring of the destruction of stearic acid and generation of carbon dioxide by self-cleaning semiconductor photocatalytic films. J.Photochem. Photobio. A 2006, 182, 181–186.
DOI: 10.1016/j.jphotochem.2006.02.010
Google Scholar
[4]
Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466.
DOI: 10.1002/adma.200390108
Google Scholar
[5]
Renault, F.; Morin-Crini, N.; Gimbert, F.; Badot, P. M.; Crini, G. Cationized starch-based material as a new ion exchanger adsorbent for the removal of C. I. acid blue 25 from aqueous solutions. Bioresour. Technol. 2008, 99, 7573–7586.
DOI: 10.1016/j.biortech.2008.02.011
Google Scholar
[6]
Srikant, V.; Clarke, D. R. On the optical band gap of zinc oxide. J. Appl. Phys.1998, 83, 5447–5451.
DOI: 10.1063/1.367375
Google Scholar
[7]
Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Photocatalysis and photo induced hydrophilicity of various metal oxide thin films. Chem. Mater. 2002, 14, 2812–2816.
DOI: 10.1021/cm020076p
Google Scholar
[8]
Z. Zhang, W. Wang, L. Zhang, Large improvement of photo-response of CuPc sensitized Bi2WO6 with enhanced photocatalytic activity, Dalton T., 42 (2013) 4579-4585.
DOI: 10.1039/c2dt32622a
Google Scholar
[9]
Ö.A. Yıldırım, H.E. Unalan, C. Durucan, Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties, J. Am. Ceram. Soc., 96 (2013) 766-773.
DOI: 10.1111/jace.12218
Google Scholar
[10]
O. Bechambi, M. Chalbi, W. Najjar, S. Sayadi, Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity, Appl. Surf. Sci., 347 (2015) 414-420.
DOI: 10.1016/j.apsusc.2015.03.049
Google Scholar
[11]
W. Yu, J. Zhang, T. Peng, New insight into the enhanced photocatalytic activity of N-, C and S-doped ZnO photocatalysts, Appl. Catal. B-Environ., 181 (2016) 220-227.
DOI: 10.1016/j.apcatb.2015.07.031
Google Scholar
[12]
A. Behzadnia, M. Montazer, M.M. Rad, In-situ sono synthesis of nano N-doped ZnO on wool producing fabric with photo and bio activities, cell viability and enhanced mechanical properties, J. Photo. Photobio. B, 149 (2015) 103-115.
DOI: 10.1016/j.jphotobiol.2015.05.006
Google Scholar
[13]
S.S. Khan, Enhancement of visible light photocatalytic activity of CdO modified ZnO nano hybrid particles, J. Photo. Photobio. B, 142 (2015) 1-7.
Google Scholar
[14]
R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater., 156 (2008) 194-200.
DOI: 10.1016/j.jhazmat.2007.12.033
Google Scholar
[15]
Ö. Altıntaş Yıldırım, C. Durucan, Room temperature synthesis of Cu incorporated ZnO nanoparticles with room temperature ferromagnetic activity: Structural, optical and magnetic characterization, Ceram. Int., 42 (2016) 3229-3238.
DOI: 10.1016/j.ceramint.2015.10.113
Google Scholar
[16]
K.K.R. KSR, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Adv., 5 (2015) 3306-3351.
DOI: 10.1039/c4ra13299h
Google Scholar
[17]
D.Y. Inamdar, A.D. Lad, A.K. Pathak, I. Dubenko, N. Ali, S. Mahamuni, Ferromagnetism in ZnO Nanocrystals: Doping and Surface Chemistry, J. Phys. Chem. C, 114 (2010) 1451-1459.
DOI: 10.1021/jp909053f
Google Scholar
[18]
R. Saleh, N.F. Djaja, Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light, Spectrochim. Acta A, 130 (2014) 581-590.
DOI: 10.1016/j.saa.2014.03.089
Google Scholar
[19]
Q. Xiaoqing, L. Guangshe, S. Xuefei, L. Liping, F. Xianzhi, Doping effects of Co2+ ions on ZnO nanorods and their photocatalytic properties, Nanotechnology, 19 (2008) 215703 (8pp).
Google Scholar
[20]
C. Xu, L. Cao, G. Su, W. Liu, X. Qu, Y. Yu, Preparation, characterization and photocatalytic activity of Co-doped ZnO powders, J. Alloy. Compd., 497 (2010) 373-376.
DOI: 10.1016/j.jallcom.2010.03.076
Google Scholar
[21]
R. He, R.K. Hocking, T. Tsuzuki, Co-doped ZnO nano powders: location of cobalt and reduction in photocatalytic activity, Mater. Chem. Phys., 132 (2012) 1035-1040.
DOI: 10.1016/j.matchemphys.2011.12.061
Google Scholar
[22]
S. Kuriakose, B. Satpati, S. Mohapatra, Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method, Phys. Chem. Chem. Phys., 16 (2014) 12741-12749.
DOI: 10.1039/c4cp01315h
Google Scholar
[23]
B.M. Rajbongshi, S. Samdarshi, Cobalt-doped zincblende–wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum, Appl. Catal. B- Environ., 144 (2014) 435-441.
DOI: 10.1016/j.apcatb.2013.07.048
Google Scholar
[24]
S.J. Gnanamuthu, S.J. Jeyakumar, I.K. Punithavathy, K. Parasuraman, V.S. Nagarethinam, A.R. Balu, Trans. Indian Inst. Met.
Google Scholar
[25]
J. El Ghoul • M. Kraini • L. El MirSynthesis of Co-doped ZnO nanoparticles by sol–gel method and its characterization, J Mater Sci: Mater Electron DOI 10.1007/s10854-015-2722-z.
DOI: 10.1007/s10854-015-2722-z
Google Scholar
[26]
O.D. Jayakumar, H.G. Salunke, R.M. Kadam, Manoj Mohapatra, G. Yaswant, S.K. Kulshreshtha, Nanotechnol. IOP Publ. 17 (2006) 1278.
Google Scholar
[27]
JacekWojnarowicz 1,*, Tadeusz Chudoba 1, Stanisław Gierlotka 1, Kamil Sobczak 2 and Witold Lojkowski 1, Size Control of Cobalt-Doped ZnO Nanoparticles Obtained in Microwave Solvothermal Synthesis, Crystals 2018, 8, 179;.
DOI: 10.3390/cryst8040179
Google Scholar
[28]
M. Nirmala, A. Anukaliani, Characterization of undoped and Co doped ZnO nanoparticles synthesized by DC thermal plasma method, Physica B 406 (2011) 911–915.
DOI: 10.1016/j.physb.2010.12.026
Google Scholar
[29]
G. Poongodi a,b, P. Anandan c, R. Mohan Kumar b,⇑, R. Jayavel d, Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 148 (2015) 237–243.
DOI: 10.1016/j.saa.2015.03.134
Google Scholar