Photocatalytic Activities of Cobalt-Doped ZnO Nanoparticles by Hydrothermal Method

Article Preview

Abstract:

Photocatalytically active cobalt-doped ZnO (Co: ZnO) hexagonal nanoparticles have been prepared by hydrothermal process. X-ray diffraction, SEM, FTIR and UV–vis spectroscopy confirmed that the dopant ions substitute for some of the lattice zinc ions, and furthermore, that Co2+ ion exists. The as-prepared Co: ZnO samples have an extended light absorption range compared with pure ZnO and showed highly efficient photocatalytic activity, only requiring 120 min to decompose ~90% of MB dye under sun light irradiation. The results indicated that a strong electronic interaction between the Co and ZnO was present, and that the incorporation of Co promoted the charge separation and enhanced the charge transfer ability and, at the same time, effectively inhibited the recombination of photogenerated charge carriers in ZnO, resulting in high visible light photocatalytic activity.

You might also be interested in these eBooks

Info:

Pages:

33-43

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Afzaal, M.; Malik, M. A.; O'Brien, P. Preparation of zinc containing materials. New J. Chem. 2007, 31, 2029–(2040).

Google Scholar

[2] Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860.

DOI: 10.1021/jp066952u

Google Scholar

[3] Mills, A.; Wang, J. S. Simultaneous monitoring of the destruction of stearic acid and generation of carbon dioxide by self-cleaning semiconductor photocatalytic films. J.Photochem. Photobio. A 2006, 182, 181–186.

DOI: 10.1016/j.jphotochem.2006.02.010

Google Scholar

[4] Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466.

DOI: 10.1002/adma.200390108

Google Scholar

[5] Renault, F.; Morin-Crini, N.; Gimbert, F.; Badot, P. M.; Crini, G. Cationized starch-based material as a new ion exchanger adsorbent for the removal of C. I. acid blue 25 from aqueous solutions. Bioresour. Technol. 2008, 99, 7573–7586.

DOI: 10.1016/j.biortech.2008.02.011

Google Scholar

[6] Srikant, V.; Clarke, D. R. On the optical band gap of zinc oxide. J. Appl. Phys.1998, 83, 5447–5451.

DOI: 10.1063/1.367375

Google Scholar

[7] Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Photocatalysis and photo induced hydrophilicity of various metal oxide thin films. Chem. Mater. 2002, 14, 2812–2816.

DOI: 10.1021/cm020076p

Google Scholar

[8] Z. Zhang, W. Wang, L. Zhang, Large improvement of photo-response of CuPc sensitized Bi2WO6 with enhanced photocatalytic activity, Dalton T., 42 (2013) 4579-4585.

DOI: 10.1039/c2dt32622a

Google Scholar

[9] Ö.A. Yıldırım, H.E. Unalan, C. Durucan, Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties, J. Am. Ceram. Soc., 96 (2013) 766-773.

DOI: 10.1111/jace.12218

Google Scholar

[10] O. Bechambi, M. Chalbi, W. Najjar, S. Sayadi, Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity, Appl. Surf. Sci., 347 (2015) 414-420.

DOI: 10.1016/j.apsusc.2015.03.049

Google Scholar

[11] W. Yu, J. Zhang, T. Peng, New insight into the enhanced photocatalytic activity of N-, C and S-doped ZnO photocatalysts, Appl. Catal. B-Environ., 181 (2016) 220-227.

DOI: 10.1016/j.apcatb.2015.07.031

Google Scholar

[12] A. Behzadnia, M. Montazer, M.M. Rad, In-situ sono synthesis of nano N-doped ZnO on wool producing fabric with photo and bio activities, cell viability and enhanced mechanical properties, J. Photo. Photobio. B, 149 (2015) 103-115.

DOI: 10.1016/j.jphotobiol.2015.05.006

Google Scholar

[13] S.S. Khan, Enhancement of visible light photocatalytic activity of CdO modified ZnO nano hybrid particles, J. Photo. Photobio. B, 142 (2015) 1-7.

Google Scholar

[14] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater., 156 (2008) 194-200.

DOI: 10.1016/j.jhazmat.2007.12.033

Google Scholar

[15] Ö. Altıntaş Yıldırım, C. Durucan, Room temperature synthesis of Cu incorporated ZnO nanoparticles with room temperature ferromagnetic activity: Structural, optical and magnetic characterization, Ceram. Int., 42 (2016) 3229-3238.

DOI: 10.1016/j.ceramint.2015.10.113

Google Scholar

[16] K.K.R. KSR, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Adv., 5 (2015) 3306-3351.

DOI: 10.1039/c4ra13299h

Google Scholar

[17] D.Y. Inamdar, A.D. Lad, A.K. Pathak, I. Dubenko, N. Ali, S. Mahamuni, Ferromagnetism in ZnO Nanocrystals: Doping and Surface Chemistry, J. Phys. Chem. C, 114 (2010) 1451-1459.

DOI: 10.1021/jp909053f

Google Scholar

[18] R. Saleh, N.F. Djaja, Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light, Spectrochim. Acta A, 130 (2014) 581-590.

DOI: 10.1016/j.saa.2014.03.089

Google Scholar

[19] Q. Xiaoqing, L. Guangshe, S. Xuefei, L. Liping, F. Xianzhi, Doping effects of Co2+ ions on ZnO nanorods and their photocatalytic properties, Nanotechnology, 19 (2008) 215703 (8pp).

Google Scholar

[20] C. Xu, L. Cao, G. Su, W. Liu, X. Qu, Y. Yu, Preparation, characterization and photocatalytic activity of Co-doped ZnO powders, J. Alloy. Compd., 497 (2010) 373-376.

DOI: 10.1016/j.jallcom.2010.03.076

Google Scholar

[21] R. He, R.K. Hocking, T. Tsuzuki, Co-doped ZnO nano powders: location of cobalt and reduction in photocatalytic activity, Mater. Chem. Phys., 132 (2012) 1035-1040.

DOI: 10.1016/j.matchemphys.2011.12.061

Google Scholar

[22] S. Kuriakose, B. Satpati, S. Mohapatra, Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method, Phys. Chem. Chem. Phys., 16 (2014) 12741-12749.

DOI: 10.1039/c4cp01315h

Google Scholar

[23] B.M. Rajbongshi, S. Samdarshi, Cobalt-doped zincblende–wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum, Appl. Catal. B- Environ., 144 (2014) 435-441.

DOI: 10.1016/j.apcatb.2013.07.048

Google Scholar

[24] S.J. Gnanamuthu, S.J. Jeyakumar, I.K. Punithavathy, K. Parasuraman, V.S. Nagarethinam, A.R. Balu, Trans. Indian Inst. Met.

Google Scholar

[25] J. El Ghoul • M. Kraini • L. El MirSynthesis of Co-doped ZnO nanoparticles by sol–gel method and its characterization, J Mater Sci: Mater Electron DOI 10.1007/s10854-015-2722-z.

DOI: 10.1007/s10854-015-2722-z

Google Scholar

[26] O.D. Jayakumar, H.G. Salunke, R.M. Kadam, Manoj Mohapatra, G. Yaswant, S.K. Kulshreshtha, Nanotechnol. IOP Publ. 17 (2006) 1278.

Google Scholar

[27] JacekWojnarowicz 1,*, Tadeusz Chudoba 1, Stanisław Gierlotka 1, Kamil Sobczak 2 and Witold Lojkowski 1, Size Control of Cobalt-Doped ZnO Nanoparticles Obtained in Microwave Solvothermal Synthesis, Crystals 2018, 8, 179;.

DOI: 10.3390/cryst8040179

Google Scholar

[28] M. Nirmala, A. Anukaliani, Characterization of undoped and Co doped ZnO nanoparticles synthesized by DC thermal plasma method, Physica B 406 (2011) 911–915.

DOI: 10.1016/j.physb.2010.12.026

Google Scholar

[29] G. Poongodi a,b, P. Anandan c, R. Mohan Kumar b,⇑, R. Jayavel d, Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 148 (2015) 237–243.

DOI: 10.1016/j.saa.2015.03.134

Google Scholar