Microstructural Investigation of Fluoroapatite Hydrothermally Converted from Hydroxyapatite Synthesized from Crocodile Eggshell

Article Preview

Abstract:

Fluoro/hydroxyapatite (FHAp) were prepared by hydrothermal at 150 °C for 24 hours with different of starting materials. The conversion of hydroxyapatite (HAp) and tricalcium phosphate to FHAp showed the rod-like shape with 200 nm. While, the morphology of FHAp from crocodile eggshell as CaCO3 form with different in phosphorus and fluoride source showed the unique structure evolution from rod-like hexagonal crystals, dumbbell to ball shape. Two distinctive morphology, first when using NaF as fluoride source with (NH4)2HPO4 precursor show the large cubic structure in high magnification it is tufted hexagonal crystal and it bundle like structure. As the pH value decreases in NH4F, it increases crystal size. For H3PO4 as phosphate precursor found that unique structure evolution from rod-like hexagonal crystals to dumbbell structure and then form the sphere assembly with a size of several micrometers.

You might also be interested in these eBooks

Info:

Pages:

21-32

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Wang, Bioactive Materials and Processing, in: D. Shi (Ed.), Biomaterials and Tissue Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp.1-82.

Google Scholar

[2] Y. Chen, X. Miao, Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents, Biomaterials 26 (2005) 1205-1210.

DOI: 10.1016/j.biomaterials.2004.04.027

Google Scholar

[3] M.F. Alif, W. Aprillia, S. Arief, Peat water purification by hydroxyapatite (hap) synthesized from waste pensi (corbicula moltkiana) shells, IOP Conference Series: Materials Science and Engineering 299 (2018) 012002.

DOI: 10.1088/1757-899x/299/1/012002

Google Scholar

[4] L.J. Cummings, M.A. Snyder, K. Brisack, Chapter 24 Protein chromatography on hydroxyapatite columns, in: R.R. Burgess, M.P. Deutscher (Eds.), Methods in Enzymology, Academic Press, 2009, pp.387-404.

DOI: 10.1016/s0076-6879(09)63024-x

Google Scholar

[5] E. Bernalte, J. Kamieniak, E.P. Randviir, Á. Bernalte-García, C.E. Banks, The preparation of hydroxyapatite from unrefined calcite residues and its application for lead removal from aqueous solutions, RSC Advances 9 (2019) 4054-4062.

DOI: 10.1039/c8ra04701d

Google Scholar

[6] Y. Yang, Q. Wu, M. Wang, J. Long, Z. Mao, X. Chen, Hydrothermal synthesis of hydroxyapatite with different morphologies: influence of supersaturation of the reaction system, Cryst. Growth Des. 14 (2014) 4864-4871.

DOI: 10.1021/cg501063j

Google Scholar

[7] L.-X. Yang, J.-J. Yin, L.-L. Wang, G.-X. Xing, P. Yin, Q.-W. Liu, Hydrothermal synthesis of hierarchical hydroxyapatite: Preparation, growth mechanism and drug release property, Ceram. Int. 38 (2012) 495-502.

DOI: 10.1016/j.ceramint.2011.07.033

Google Scholar

[8] U. Boonyang, P. Chaopanich, A. Wongchaisuwat, P. Senthongkaew, S. Siripaisarnpipat, Effect of phosphate precursor on the production of hydroxyapatite from crocodile eggshells, J. Biomim. Biomater.Tissue Eng. 5 (2010) 31-37.

DOI: 10.4028/www.scientific.net/jbbte.5.31

Google Scholar

[9] D.-M. Liu, T. Troczynski, W.J. Tseng, Water-based sol–gel synthesis of hydroxyapatite: process development, Biomaterials 22 (2001) 1721-1730.

DOI: 10.1016/s0142-9612(00)00332-x

Google Scholar

[10] B.A.E. Ben-Arfa, I.M.M. Salvado, J.M.F. Ferreira, R.C. Pullar, Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time, Mater. Sci. Eng. C 70 (2017) 796-804.

DOI: 10.1016/j.msec.2016.09.054

Google Scholar

[11] S. Türk, İ. Altınsoy, G. ÇelebiEfe, M. Ipek, M. Özacar, C. Bindal, Microwave–assisted biomimetic synthesis of hydroxyapatite using different sources of calcium, Mater. Sci. Eng. C 76 (2017) 528-535.

DOI: 10.1016/j.msec.2017.03.116

Google Scholar

[12] A. Farzadi, M. Solati-Hashjin, F. Bakhshi, A. Aminian, Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation, Ceram. Int. 37 (2011) 65-71.

DOI: 10.1016/j.ceramint.2010.08.021

Google Scholar

[13] A. Yelten-Yilmaz, S. Yilmaz, Wet chemical precipitation synthesis of hydroxyapatite (HA) powders, Ceram. Int. 44 (2018) 9703-9710.

DOI: 10.1016/j.ceramint.2018.02.201

Google Scholar

[14] I. Macha, U. Boonyang, S. Cazalbou, B. Ben-Nissan, C. Charvillat, F. N. Oktar, D. Grossin, Comparative study of Coral Conversion, Part 2: Microstructural evolution of calcium phosphate, J. Aust. Ceram. Soc. 51 (2015) 149-159.

Google Scholar

[15] N. S. Al‐Qasas, S. Rohani, Synthesis of Pure Hydroxyapatite and the Effect of Synthesis Conditions on its Yield, Crystallinity, Morphology and Mean Particle Size, Sep. Sci. Technol. 40 (2005) 3187-3224.

DOI: 10.1080/01496390500385400

Google Scholar

[16] W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Res. 13 (1998) 94-117.

DOI: 10.1557/jmr.1998.0015

Google Scholar

[17] R. F. J. Hu, J. J. Russell, B. Ben-Nissan, R. Vago, Australian coral as a biomaterial: Characteristics, J. Mater. Sci. Technol. 16 (2000) 591-595.

Google Scholar

[18] N. A. I. Adnen, N. A. A. Halim, M. A. A. M. Nor, Development of hydroxyapatite from Setiu coral via hydrothermal method, AIP Conference Proceedings 1885 (2017) 020151.

DOI: 10.1063/1.5002345

Google Scholar

[19] W. Liu, T. Wang, Y. Shen, H. Pan, S. Peng, W. W. Lu, Strontium incorporated coralline hydroxyapatite for engineering bone, ISRN Biomaterials 2013 (2013) 11.

DOI: 10.5402/2013/649163

Google Scholar

[20] K. S. Vecchio, X. Zhang, J. B. Massie, M. Wang, C. W. Kim, Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants, Acta Biomaterialia 3 (2007) 910-918.

DOI: 10.1016/j.actbio.2007.06.003

Google Scholar

[21] S. Santhosh, S. B. Prabu, Characterization of nano-hydroxyapatite synthesized from seashells through wet chemical method, Int. J. Nanosci. 11 (2012) 1250031.

DOI: 10.1142/s0219581x12500317

Google Scholar

[22] M. Z. A. Khiri, K. A. Matori, N. Zainuddin, C. A. C. Abdullah, Z. N. Alassan, N. F. Baharuddin, M. H. M. Zaid, The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature, Springer Plus 5 (2016) 1206.

DOI: 10.1186/s40064-016-2824-y

Google Scholar

[23] D. Reinares-Fisac, S. Veintemillas-Verdaguer, L. Fernández-Díaz, Conversion of biogenic aragonite into hydroxyapatite scaffolds in boiling solutions, Cryst. Eng. Comm. 19 (2017) 110-116.

DOI: 10.1039/c6ce01725h

Google Scholar

[24] E. C. Moreno, M. Kresak, R. T. Zahradnik, Fluoridated Hydroxyapatite Solubility and Caries Formation, Nature 247 (1974) 64-65.

DOI: 10.1038/247064a0

Google Scholar

[25] W. Xia, J. Lausmaa, P. Thomsen, H. Engqvist, Highly packed and aligned fluoride substituted hydroxyapatite via a surfactant-free process, J. Biomed. Mater. Res. B 100B (2012) 75-81.

DOI: 10.1002/jbm.b.31924

Google Scholar

[26] C. J. Tredwin, A.M. Young, E.A. Abou Neel, G. Georgiou, J.C. Knowles, Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: dissolution behaviour and biological properties after crystallisation, J. Mater. Sci-Mater. M. 25 (2014) 47-53.

DOI: 10.1007/s10856-013-5050-y

Google Scholar

[27] B. Nasiri-Tabrizi, A. Fahami, Mechanochemical synthesis of fluorapatite-zinc oxide (FAp-ZnO) composite nanopowders, ISRN Ceram. 2012 (2012) 9.

DOI: 10.5402/2012/754704

Google Scholar

[28] Y. Liu, W. Wang, Y. Zhan, C. Zheng, G. Wang, A simple route to hydroxyapatite nanofibers, Mater. Lett. 56 (2002) 496-501.

DOI: 10.1016/s0167-577x(02)00539-6

Google Scholar

[29] M. Yoshimura, P. Sujaridworakun, F. Koh, T. Fujiwara, D. Pongkao, A. Ahniyaz, Hydrothermal conversion of calcite crystals to hydroxyapatite, Mater. Sci. Eng. C 24 (2004) 521-525.

DOI: 10.1016/j.msec.2004.01.005

Google Scholar

[30] J. Shen, B. Jin, Q. Y. Jiang, Y. M. Hu, X. Y. Wang, Morphology-controlled synthesis of fluorapatite nano/microstructures via surfactant-assisted hydrothermal process, Mater. Design 97 (2016) 204-212.

DOI: 10.1016/j.matdes.2016.02.091

Google Scholar