Size and Shape Dependent Melting Point Depression of Al, Ag, Au, and Pb Nanoparticles

Article Preview

Abstract:

This paper reports melting temperature depression (MPD) for nano particle using different melting models reported in the literature such as: Liquid drop model, Surface phonon instability model, Gibbs Thomson equation, and Semi-empirical model etc. Reduced particle size is associated with a significant decrease of melting temperature. For bigger nanoparticles of all forms taken into consideration, the behaviour of melting temperature is identical, while for small nanoparticles, it differs dramatically. The effect of the shapes on melting point during the depression of nano particles has also been calculated for different shapes like film, icosahedron, wire, spherical, hexahedron, octahedron and tetrahedron. It has been discovered that the shape of the particle affects the lead, silver, gold, and aluminum nanoparticles' melting temperatures. Melting temperature depression is found to be lowest for tetrahedron-shaped nanoparticles and largest for thin films.

You might also be interested in these eBooks

Info:

Pages:

1-16

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Sun, S. L. Simon, The melting behavior of Aluminum nanoparticles, Thermochimica Acta, 463 (2007) 32-40, doi.org/.

DOI: 10.1016/j.tca.2007.07.007

Google Scholar

[2] S. Tokonami, N. Morita, K. Takasaki, N. Toshima, Novel synthesis, structure, and oxidation catalysis of Ag/Au bimetallic nano particles, The Journal of Physical Chemistry, 114 (2010) 10336–10341.

DOI: 10.1021/jp9119149

Google Scholar

[3] J. Krajczewski, K. Kolataj, A. Kudelski, Enhanced catalytic activity of solid and hollow platinum-cobalt nano particles towards reduction of 4-nitrophenol, Applied Surface Science, 388 (2016) 624–630.

DOI: 10.1016/j.apsusc.2016.04.089

Google Scholar

[4] D. Zheng, C. Hu, T. Gan, X. Dang, S. Hu, Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nano particles, Sensors and Actuators. B: Chemical 148 (2010) 247–252.

DOI: 10.1016/j.snb.2010.04.031

Google Scholar

[5] H. He, X. Xu, Wu H, Jin Y (2012) Enzymatic plasmonic engineering of Ag/Au bimetallic nano shells and their use for sensitive optical glucose sensing, Advanced Material, 24 : 1736–1740. https://.

DOI: 10.1002/adma.201104678

Google Scholar

[6] S. Tabatabaei, A. Kumar, H. Ardebili, P.J Loos, P.M. Ajayan, Synthesis of Au-Sn alloy nano particles for lead-free electronics with unique combination of low and high melting temperatures, Microelectronic Reliability, 52 (2012) 2685–2689.

DOI: 10.1016/j.microrel.2012.04.008

Google Scholar

[7] H. Jiang, K. S. Moon, C. P. Wong, Recent advances of nano lead-free solder material for low processing temperature interconnect applications, Microelectronic Reliability, 53 (2013) 1968–1978.

DOI: 10.1016/j.microrel.2013.04.005

Google Scholar

[8] V. I. Levitas, M. L. Pantoya, G. Chauhan, I. Rivero, Effect of the Alumina shell on the melting temperature depression for Aluminum nanoparticles, The Journal of Physical Chemistry C, 113 (2009) 14088–14096.

DOI: 10.1021/jp902317m

Google Scholar

[9] S. L. Lai, J. R. A. Carlsson, L. H. Allen, Melting point depression of Al clusters generated during the early stages of film growth: Nano-calorimetry measurements, Applied Physics Letters, 72 (1998) 1098–1100.

DOI: 10.1063/1.120946

Google Scholar

[10] A. V. Fedorov, A. V. Shulgin, Mathematical model for melting of nano sized metal particles, Combustion, Explosion and Shock Waves, 47 (2011) 147–152.

DOI: 10.1134/S001050821102002X

Google Scholar

[11] J. Zhu, Q. Fu, Y. Xue, Z. Cui, Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation, Materials Chemistry and Physics, 192 (2017) 22-28.

DOI: 10.1016/j.matchemphys.2017.01.049

Google Scholar

[12] Q. Jiang, S. Zhang, M. Zhao, Size-dependent melting point of noble metals, Materials Chemistry and Physics, 82 (2003) 225–227, doi.org/.

DOI: 10.1016/S0254-0584(03)00201-3

Google Scholar

[13] M. A. Asoro, J. Damiano, P. J. Ferreira, Size effect on the melting temperature of silver nanoparticles: In-Situ TEM observations, Microscopy and Microanalysis, 15 (2009) 706-707.

DOI: 10.1017/S1431927609097013

Google Scholar

[14] P. Schlexer, A. B. Andersen, B. Sebok, I. Chorkendorff, J. Schiøtz, T. W. Hansen, Size-Dependence of the Melting Temperature of Individual Au Nanoparticles, Particle and Particle System Characterization, 36 (2009) 1800480-7, doi.org/.

DOI: 10.1002/ppsc.201800480

Google Scholar

[15] P. Buffat, J. P. Borel, Size effect on the melting temperature of gold particles, Physical Review A, 13 (1976) 2287-2298.

DOI: 10.1103/PhysRevA.13.2287

Google Scholar

[16] C. Dai, P. Saidi, H. Song, Z. Yao, M. R. Daymond, J. J. Hoyt, A test of a phenomenological model of size dependent melting in Au nanoparticles, Acta Materialia, 136 (2017) 11-20, doi.org/.

DOI: 10.1016/j.actamat.2017.06.052

Google Scholar

[17] J. W. M. Frenken, Surface melting of Pb (110): A compilation of experimental results, Journal of Vacuum Science and Technolgy A, 17 (1989) 2147-2151, doi.org/.

DOI: 10.1116/1.575946

Google Scholar

[18] W. Luo, W. Hu, S. Xiao, Melting temperature of Pb nanostructural materials from free energy calculation, The Journal of Chemical Physics, 28 (2008) 074710-9, doi.org/.

DOI: 10.1063/1.2830715

Google Scholar

[19] W. H. Qi, Size effect on melting temperature of nano solids, Physica B:Condensed Matter, 368 (2005) 46-50.

DOI: 10.1016/j.Physb.2005.06.035

Google Scholar

[20] Seema, G. Kumar, A. Sharma, S. Kashyap, Z. Beddiaf, C. Shekhar, Thermodynamic modeling of Al–Si nano alloy phase diagram. Journal of Nanoparticle Research, 23 (2021) 245-9, doi.org/.

DOI: 10.1007/s11051-021-05351-w

Google Scholar

[21] Seema, A. Sharma, S. Kashyap, B. Zaidi, C. Shekhar (2022) Thermodynamic modelling of Si-Zn nano-phase diagram including shape effect, Journal of Nanoparticle Research, 24 (2022) 107.

DOI: 10.1007/s11051-022-05494-4

Google Scholar

[22] Seema, P. Yadav, S. Kashyap, C. Shekhar, Thermodynamic modelling of Ag–Si nanophase diagram including shape effect,  J Nanopart Res. 26 (2024) 160, doi.org/.

DOI: 10.1007/s11051-024-06080-6

Google Scholar

[23] S. Soni, P. S. Jagat, Development of size and shape dependent model for various thermodynamic properties of nanomaterials, Physics Open, 19 (2024)  100215, doi.org/

DOI: 10.1016/j.physo.2024.100215

Google Scholar

[24] P. Pawlow, The dependency of the melting point on the surface energy of a solid body, Z. Phys. Chem., 65 (1909) 545-548.

Google Scholar

[25] K. K. Nanda, S. N. Sahu, S. N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems,  Physical Review A, 66 (2002) 013208 -8.

DOI: 10.1103/PhysRevA.66.013208

Google Scholar

[26] G. Guenther, O. Guillon, Models of size-dependent nano particle melting tested on gold, J. Mater. Sci., 49 (2014) 7915-7932.

DOI: 10.1007/s10853-014-8544-1

Google Scholar

[27] J. Lee, T. Tanaka, J. Lee, H. Mori, Effect on substrates on the melting temperature of gold nano particles, Computer coupling of Phase Diagram and Thermo chemistry, 31 (2007) 105-111.

DOI: 10.1016/j.calphad.2006.10.001

Google Scholar

[28] P. R. Couchman, W. A. Jesser, Thermodynamic theory of size dependent of melting temperature in metals, Nature, 269 (1977) 481-483.

DOI: 10.1038/269481a0

Google Scholar

[29] K. K. Nanda, Size-dependent melting of nano particles: Hundred years of thermodynamic model, Pramana, 72 (2009) 617-628.

DOI: 10.1007/s12043-009-0055-2

Google Scholar

[30] M. Wautelet, Estimation of the variation of the melting temperature with the size of small particles, on the basis of a surface phonon instability model, Journal of Physics D: Applied Physics, 24 (1991) 343-346, doi.org/.

DOI: 10.1088/0022-3727/24/3/017

Google Scholar

[31] C. A. Johnson, (1965) Generalization of the Gibbs-Thomson equation, Surface Science, 13 (1965) 429-444, doi.org/.

DOI: 10.1016/0039-6028(65)90024-5

Google Scholar

[32] C. Q. Sun, Y. Wang, B. K. Tay, S. Li, H. Huang, Y. B. Zhang, Correlation between the melting point of a nano solid and the cohesive energy of a surface atom, J. Phys. Chem. B, 106 (2002) 10701-10705.

DOI: 10.1021/jp025868l

Google Scholar

[33] H. Reiss, I. B. Wilson, The effect of surface on melting point, J. Colloid Sci., 3 (1948) 551-561, doi: 10.1016/S0095-8522 (48)90048-8.

DOI: 10.1016/s0095-8522(48)90048-8

Google Scholar

[34] E. Rie, Influence of surface tension on melting and freezing, Z Phys Chem., 104 (1923) 354–362, doi.org/.

DOI: 10.1515/zpch-1923-10425

Google Scholar

[35] S. Bhatt, M. Kumar, Effect of size and shape on melting and superheating of free standing and embedded nanoparticles, Journal of Physical and Chemistry of Solid, 106 (2017) 112-117, doi.org/.

DOI: 10.1016/j.jpcs.2017.03.010

Google Scholar

[36] T. B. David, Y. Lereah, G. Deutscher, R. Kofman, P. Cheyssac, Solid liquid transition in ultra-fine lead particles. Philosophical Magazine A, 71 (1995) 1135-1143.

DOI: 10.1080/01418619508236241

Google Scholar

[37] I. F. Bainbridge, J. A. Taylor, The Surface Tension of Pure Aluminum and Aluminum Alloys, Metallurgical and Materials Transactions A, 44 (2013) 3901–3909.

DOI: 10.1007/s11661-013-1696-9

Google Scholar

[38] Heat of fusion of all the element in the periodic table.

Google Scholar

[39] L. Carl, Yaws, The Yaws Handbook of physical properties for hydrocarbons and chemicals, Houston, TX: Gulf Publishing Company, 2005.

Google Scholar