[1]
J. Sun, S. L. Simon, The melting behavior of Aluminum nanoparticles, Thermochimica Acta, 463 (2007) 32-40, doi.org/.
DOI: 10.1016/j.tca.2007.07.007
Google Scholar
[2]
S. Tokonami, N. Morita, K. Takasaki, N. Toshima, Novel synthesis, structure, and oxidation catalysis of Ag/Au bimetallic nano particles, The Journal of Physical Chemistry, 114 (2010) 10336–10341.
DOI: 10.1021/jp9119149
Google Scholar
[3]
J. Krajczewski, K. Kolataj, A. Kudelski, Enhanced catalytic activity of solid and hollow platinum-cobalt nano particles towards reduction of 4-nitrophenol, Applied Surface Science, 388 (2016) 624–630.
DOI: 10.1016/j.apsusc.2016.04.089
Google Scholar
[4]
D. Zheng, C. Hu, T. Gan, X. Dang, S. Hu, Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nano particles, Sensors and Actuators. B: Chemical 148 (2010) 247–252.
DOI: 10.1016/j.snb.2010.04.031
Google Scholar
[5]
H. He, X. Xu, Wu H, Jin Y (2012) Enzymatic plasmonic engineering of Ag/Au bimetallic nano shells and their use for sensitive optical glucose sensing, Advanced Material, 24 : 1736–1740. https://.
DOI: 10.1002/adma.201104678
Google Scholar
[6]
S. Tabatabaei, A. Kumar, H. Ardebili, P.J Loos, P.M. Ajayan, Synthesis of Au-Sn alloy nano particles for lead-free electronics with unique combination of low and high melting temperatures, Microelectronic Reliability, 52 (2012) 2685–2689.
DOI: 10.1016/j.microrel.2012.04.008
Google Scholar
[7]
H. Jiang, K. S. Moon, C. P. Wong, Recent advances of nano lead-free solder material for low processing temperature interconnect applications, Microelectronic Reliability, 53 (2013) 1968–1978.
DOI: 10.1016/j.microrel.2013.04.005
Google Scholar
[8]
V. I. Levitas, M. L. Pantoya, G. Chauhan, I. Rivero, Effect of the Alumina shell on the melting temperature depression for Aluminum nanoparticles, The Journal of Physical Chemistry C, 113 (2009) 14088–14096.
DOI: 10.1021/jp902317m
Google Scholar
[9]
S. L. Lai, J. R. A. Carlsson, L. H. Allen, Melting point depression of Al clusters generated during the early stages of film growth: Nano-calorimetry measurements, Applied Physics Letters, 72 (1998) 1098–1100.
DOI: 10.1063/1.120946
Google Scholar
[10]
A. V. Fedorov, A. V. Shulgin, Mathematical model for melting of nano sized metal particles, Combustion, Explosion and Shock Waves, 47 (2011) 147–152.
DOI: 10.1134/S001050821102002X
Google Scholar
[11]
J. Zhu, Q. Fu, Y. Xue, Z. Cui, Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation, Materials Chemistry and Physics, 192 (2017) 22-28.
DOI: 10.1016/j.matchemphys.2017.01.049
Google Scholar
[12]
Q. Jiang, S. Zhang, M. Zhao, Size-dependent melting point of noble metals, Materials Chemistry and Physics, 82 (2003) 225–227, doi.org/.
DOI: 10.1016/S0254-0584(03)00201-3
Google Scholar
[13]
M. A. Asoro, J. Damiano, P. J. Ferreira, Size effect on the melting temperature of silver nanoparticles: In-Situ TEM observations, Microscopy and Microanalysis, 15 (2009) 706-707.
DOI: 10.1017/S1431927609097013
Google Scholar
[14]
P. Schlexer, A. B. Andersen, B. Sebok, I. Chorkendorff, J. Schiøtz, T. W. Hansen, Size-Dependence of the Melting Temperature of Individual Au Nanoparticles, Particle and Particle System Characterization, 36 (2009) 1800480-7, doi.org/.
DOI: 10.1002/ppsc.201800480
Google Scholar
[15]
P. Buffat, J. P. Borel, Size effect on the melting temperature of gold particles, Physical Review A, 13 (1976) 2287-2298.
DOI: 10.1103/PhysRevA.13.2287
Google Scholar
[16]
C. Dai, P. Saidi, H. Song, Z. Yao, M. R. Daymond, J. J. Hoyt, A test of a phenomenological model of size dependent melting in Au nanoparticles, Acta Materialia, 136 (2017) 11-20, doi.org/.
DOI: 10.1016/j.actamat.2017.06.052
Google Scholar
[17]
J. W. M. Frenken, Surface melting of Pb (110): A compilation of experimental results, Journal of Vacuum Science and Technolgy A, 17 (1989) 2147-2151, doi.org/.
DOI: 10.1116/1.575946
Google Scholar
[18]
W. Luo, W. Hu, S. Xiao, Melting temperature of Pb nanostructural materials from free energy calculation, The Journal of Chemical Physics, 28 (2008) 074710-9, doi.org/.
DOI: 10.1063/1.2830715
Google Scholar
[19]
W. H. Qi, Size effect on melting temperature of nano solids, Physica B:Condensed Matter, 368 (2005) 46-50.
DOI: 10.1016/j.Physb.2005.06.035
Google Scholar
[20]
Seema, G. Kumar, A. Sharma, S. Kashyap, Z. Beddiaf, C. Shekhar, Thermodynamic modeling of Al–Si nano alloy phase diagram. Journal of Nanoparticle Research, 23 (2021) 245-9, doi.org/.
DOI: 10.1007/s11051-021-05351-w
Google Scholar
[21]
Seema, A. Sharma, S. Kashyap, B. Zaidi, C. Shekhar (2022) Thermodynamic modelling of Si-Zn nano-phase diagram including shape effect, Journal of Nanoparticle Research, 24 (2022) 107.
DOI: 10.1007/s11051-022-05494-4
Google Scholar
[22]
Seema, P. Yadav, S. Kashyap, C. Shekhar, Thermodynamic modelling of Ag–Si nanophase diagram including shape effect, J Nanopart Res. 26 (2024) 160, doi.org/.
DOI: 10.1007/s11051-024-06080-6
Google Scholar
[23]
S. Soni, P. S. Jagat, Development of size and shape dependent model for various thermodynamic properties of nanomaterials, Physics Open, 19 (2024) 100215, doi.org/
DOI: 10.1016/j.physo.2024.100215
Google Scholar
[24]
P. Pawlow, The dependency of the melting point on the surface energy of a solid body, Z. Phys. Chem., 65 (1909) 545-548.
Google Scholar
[25]
K. K. Nanda, S. N. Sahu, S. N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems, Physical Review A, 66 (2002) 013208 -8.
DOI: 10.1103/PhysRevA.66.013208
Google Scholar
[26]
G. Guenther, O. Guillon, Models of size-dependent nano particle melting tested on gold, J. Mater. Sci., 49 (2014) 7915-7932.
DOI: 10.1007/s10853-014-8544-1
Google Scholar
[27]
J. Lee, T. Tanaka, J. Lee, H. Mori, Effect on substrates on the melting temperature of gold nano particles, Computer coupling of Phase Diagram and Thermo chemistry, 31 (2007) 105-111.
DOI: 10.1016/j.calphad.2006.10.001
Google Scholar
[28]
P. R. Couchman, W. A. Jesser, Thermodynamic theory of size dependent of melting temperature in metals, Nature, 269 (1977) 481-483.
DOI: 10.1038/269481a0
Google Scholar
[29]
K. K. Nanda, Size-dependent melting of nano particles: Hundred years of thermodynamic model, Pramana, 72 (2009) 617-628.
DOI: 10.1007/s12043-009-0055-2
Google Scholar
[30]
M. Wautelet, Estimation of the variation of the melting temperature with the size of small particles, on the basis of a surface phonon instability model, Journal of Physics D: Applied Physics, 24 (1991) 343-346, doi.org/.
DOI: 10.1088/0022-3727/24/3/017
Google Scholar
[31]
C. A. Johnson, (1965) Generalization of the Gibbs-Thomson equation, Surface Science, 13 (1965) 429-444, doi.org/.
DOI: 10.1016/0039-6028(65)90024-5
Google Scholar
[32]
C. Q. Sun, Y. Wang, B. K. Tay, S. Li, H. Huang, Y. B. Zhang, Correlation between the melting point of a nano solid and the cohesive energy of a surface atom, J. Phys. Chem. B, 106 (2002) 10701-10705.
DOI: 10.1021/jp025868l
Google Scholar
[33]
H. Reiss, I. B. Wilson, The effect of surface on melting point, J. Colloid Sci., 3 (1948) 551-561, doi: 10.1016/S0095-8522 (48)90048-8.
DOI: 10.1016/s0095-8522(48)90048-8
Google Scholar
[34]
E. Rie, Influence of surface tension on melting and freezing, Z Phys Chem., 104 (1923) 354–362, doi.org/.
DOI: 10.1515/zpch-1923-10425
Google Scholar
[35]
S. Bhatt, M. Kumar, Effect of size and shape on melting and superheating of free standing and embedded nanoparticles, Journal of Physical and Chemistry of Solid, 106 (2017) 112-117, doi.org/.
DOI: 10.1016/j.jpcs.2017.03.010
Google Scholar
[36]
T. B. David, Y. Lereah, G. Deutscher, R. Kofman, P. Cheyssac, Solid liquid transition in ultra-fine lead particles. Philosophical Magazine A, 71 (1995) 1135-1143.
DOI: 10.1080/01418619508236241
Google Scholar
[37]
I. F. Bainbridge, J. A. Taylor, The Surface Tension of Pure Aluminum and Aluminum Alloys, Metallurgical and Materials Transactions A, 44 (2013) 3901–3909.
DOI: 10.1007/s11661-013-1696-9
Google Scholar
[38]
Heat of fusion of all the element in the periodic table.
Google Scholar
[39]
L. Carl, Yaws, The Yaws Handbook of physical properties for hydrocarbons and chemicals, Houston, TX: Gulf Publishing Company, 2005.
Google Scholar