Photocatalytic Activity of Magnetically Responsive Green Synthesised Co3O4 Nanoparticles

Article Preview

Abstract:

Utilising an uncomplicated, environmentally friendly strategy to synthesise nanoparticles presents a prospective substitute for dangerous chemical and expensive physical techniques. Therefore, this study was initiated with the objectives of synthesising Co3O4 nanoparticles using a facile green route and evaluating their magnetic properties and photocatalytic activities. Spherical Co3O4 nanoparticles with dimensions ranging from 8 to 32 nm were successfully produced using garlic extract. Magnetic analysis revealed weak ferromagnetism at low temperatures, with a coercive field of 14×10-4 T. This low-temperature weak ferromagnetism may be attributed to uncompensated surface spins that form a short-range ordered cluster of spins. However, inside the sample, an antiferromagnetic exchange interaction occurs between non-magnetic tetrahedral Co2+ ions and magnetic octahedral Co3+ ions. Consequently, an exchange bias field of approximately 8.76 ×10-4 T was observed. Above the Néel temperature, the thermal energy overcomes the antiferromagnetic ordering, resulting in paramagnetic behaviour at room temperature. Furthermore, the photocatalytic activity of the green synthesised Co3O4 nanoparticles demonstrated 55% degradation of methyl orange (MO) dye within 90 minutes. However, more efficient degradation (63% degradation within 90 minutes) of MO was achieved in the presence of a small amount of NaBH4, which typically functions as a source of electrons to enhance the degradation rate. The photocatalytic (dye degradation) activity of these green synthesised room temperature paramagnetic Co3O4 nanoparticles could be applicable for water purification processes.

You might also be interested in these eBooks

Info:

Pages:

17-28

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. D. Chequer, G. A. R. de Oliveira, E. A. Ferraz, J. C. Cardoso, M. B. Zanoni, D. P. de Oliveira, Textile dyes: dyeing process and environmental impact. Eco-Friendly Textile Dyeing and Finishing, 6 (2013) 151–176.

DOI: 10.5772/53659

Google Scholar

[2] G. K. Weldegebrieal, A. K. Sibhatu, Photocatalytic activity of biosynthesized α-Fe2O3 nanoparticles for the degradation of methylene blue and methyl orange dyes. Optik, 241 (2021) 167226.

DOI: 10.1016/j.ijleo.2021.167226

Google Scholar

[3] S. Mitra, T. Mukherjee, P. Kaparaju, Prediction of methyl orange removal by iron decorated activated carbon using an artificial neural network. Environ. Technol. 42 (21) (2021) 3288–3303.

DOI: 10.1080/09593330.2020.1725648

Google Scholar

[4] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities. Arab J. Chem. 12 (7) (2019) 908-931.

DOI: 10.1016/j.arabjc.2017.05.011

Google Scholar

[5] N. Hossain, Md. H. Mobarak, M. A. Mimona, Md. A. Islam, A. Hossain, F. T. Zohura, M. A. Chowdhury, Advances and significances of nanoparticles in semiconductor applications – A review. Results Eng. 19 (2023) 101347.

DOI: 10.1016/j.rineng.2023.101347

Google Scholar

[6] S. Kumar, W. Ahlawat, G. Bhanjana, S. Heydarifard, M. M. Nazhad, N. Dilbaghi, Nanotechnology-based water treatment strategies. J. Nanosci. Nanotechnol. 14(2) (2014) 1838–1858.

DOI: 10.1166/jnn.2014.9050

Google Scholar

[7] A. Arbab, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan, Y. Rui, Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 9 (2021) 629044.

DOI: 10.3389/fchem.2021.629054

Google Scholar

[8] Q. Zhang, L. Yu, C. Xu, J. Zhao, H. Pan, M. Chen, Q. Xu, Diao G, Preparation of highly efficient and magnetically recyclable Fe3O4@C@Ru nanocomposite for the photocatalytic degradation of methylene blue in visible light. Appl. Surf. Sci. 483 (2019) 241-251.

DOI: 10.1016/j.apsusc.2019.03.225

Google Scholar

[9] C. R. Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, B. S. Benjamin, A. M. E. Raj, K. Jeyadheepan, C. Sanjeeviraja, Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles. Ceramics International 41(8) (2015) 9301-9313.

DOI: 10.1016/j.ceramint.2015.03.238

Google Scholar

[10] Y. Chen, Y. Zhang, S. Fu, Synthesis and characterization of Co3O4 hollow spheres. Mater. Lett. 61(3) (2007) 701-705.

DOI: 10.1016/j.matlet.2006.05.046

Google Scholar

[11] L. Li, Y. Chu, Y. Liu, J. L. Song, D. Wang, X. W. Du, A facile hydrothermal route to synthesize novel Co3O4 nanoplates. Mater. Lett. 62(10-11) (2008) 1507-1510.

DOI: 10.1016/j.matlet.2007.09.012

Google Scholar

[12] F. Gu, C. Li, Y. Hu, L. Zhang, Synthesis and optical characterization of Co3O4 nanocrystal. J. Cryst. Growth. 304(2) (2007) 369-373.

DOI: 10.1016/j.jcrysgro.2007.03.040

Google Scholar

[13] R. M. Wang, C. M. Liu, H. Z. Zhang, C. P. Chen, L. Guo, H. B. Xu, S. H. Yang, Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic properties. Appl. Phys. Lett. 85(11) (2004) 2080-2082.

DOI: 10.1063/1.1789577

Google Scholar

[14] D. Y. Kim, S. H. Ju, H. Y. Koo, S. K. Hong, Y. C. Kang, Synthesis of nanosized Co3O4 particles by spray pyrolysis. J. Alloys. Compd. 417(1-2) (2006) 254-258.

DOI: 10.1016/j.jallcom.2005.09.013

Google Scholar

[15] A. U. Mane, K. Shalini, A. Wohlfart, A. Devi, S. A. Shivashankar, Strongly oriented thin films of Co3O4 deposited on single-crystal MgO (1 0 0) by low-pressure, low-temperature MOCVD. J. Cryst. Growth. 240(1-2) (2002) 157-163.

DOI: 10.1016/S0022-0248(02)00860-6

Google Scholar

[16] Y. Xuan, R. Liu, Y. Q. Jia, Synthesis of a new series of compounds RE2Co2/3Nb4/3O7 and stability field diagram of RE2B2/3' B4/3 "O7 pyrochlore compounds. Mater. Chem. Phys. 53(3) (1998) 256-261.

DOI: 10.1016/S0254-0584(98)00002-9

Google Scholar

[17] A. Rumplecker, F. Kleitz, E. L. Salabas, F. Schuth, Hard templating pathways for the synthesis of nanostructured porous Co3O4. Chem. Mater. 19(3) (2007) 485-496.

DOI: 10.1021/cm0610635

Google Scholar

[18] W.W. Wang, Y. J. Zhu, Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods. Mater. Res. Bull. 40(11) (2005) 1929–1935.

DOI: 10.1016/j.materresbull.2005.06.004

Google Scholar

[19] L. X. Yang, Y. J. Zhu, L. Li, L. Zhang, H. Tong, W. W. Wang, G.F. Cheng, J.F. Zhu, A Facile Hydrothermal Route to Flower‐Like Cobalt Hydroxide and Oxide. Eur. J. Inorg. Chem. 23 (2006) 4787.

DOI: 10.1002/ejic.200600553

Google Scholar

[20] F. Mohandes, F. Davar, M. S. Niasari, Preparation of Co3O4 nanoparticles by nonhydrolytic thermolysis of [Co (Pht)(H2O)]n polymers. J. Magn. Magn. Mater. 322(7) (2010) 872-877.

DOI: 10.1016/j.jmmm.2009.11.019

Google Scholar

[21] J. Jiang, L. Li, Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 61(27) (2007) 4894-4896.

DOI: 10.1016/j.matlet.2007.03.067

Google Scholar

[22] L. Ren, P. Wang, Y. Han, C. Hu, B. Wei, Synthesis of CoC2O4· 2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles. Mater. Phys. Lett. 476(1-3) (2009) 78-83.

DOI: 10.1016/j.cplett.2009.06.015

Google Scholar

[23] S. Farhadi, K. Pourzare, S. Sadeghinejad, Simple preparation of ferromagnetic Co3O4 nanoparticles by thermal dissociation of the [Co II (NH3)6](NO3)2 complex at low temperature. J. Nanostructure Chem. 3(1) (2013) 1-7.

DOI: 10.1186/2193-8865-3-16

Google Scholar

[24] R. V. Kumar, T. Diamant, A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12(8) (2000) 2301-2305.

DOI: 10.1021/cm000166z

Google Scholar

[25] S. W. Oh, H. J. Bang, Y. C. Bae, Y. K. Sun, Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J. Power Sources. 173(1) (2007) 502-509.

DOI: 10.1016/j.jpowsour.2007.04.087

Google Scholar

[26] T.L. Lai, Y.L. Lai, C. Lee, Y.Y. Shu, C.B. Wang, Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol. Catal. Today. 131(1-4) (2008) 105-110.

DOI: 10.1016/j.cattod.2007.10.039

Google Scholar

[27] P. Chelliah, S. M. Wabaidur, H. P. Sharma, M. J. Jweeg, H. S. Majdi, M. M. R. AL. Kubaisy, A. Iqbal, W. C. Lai, Green Synthesis and Characterizations of Cobalt Oxide Nanoparticles and Their Coherent Photocatalytic and Antibacterial Investigations. Water. 15(5) (2023) 910.

DOI: 10.3390/w15050910

Google Scholar

[28] S. Z. Mohammadi, B. Lashkari, A. Khosravan, Green synthesis of Co3O4 nanoparticles by using walnut green skin extract as a reducing agent by using response surface methodology. Surf. Interface. 23 (2021) 100970.

DOI: 10.1016/j.surfin.2021.100970

Google Scholar

[29] J. Dai, R. J. Mumper, Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 15(10) (2010) 7313–7352. https://.

DOI: 10.3390/molecules15107313

Google Scholar

[30] A. Trabelsi, E. K. M. Amine, M. A. Abbassi, A. Horchani, L.Chekir-Ghedira, K. Ghedira, Phytochemical Study and Antibacterial and Antibiotic Modulation Activity of Punica granatum (Pomegranate) Leaves. Scientifica. 2020(1) (2020) 1-7.

DOI: 10.1155/2020/8271203

Google Scholar

[31] C. W. Tsai, H. W. Chen, L. Y. Sheen, C. K. Lii, Garlic: Health benefits and actions. BioMedicine2(1) (2012) 17-29

DOI: 10.1016/j.biomed.2011.12.002

Google Scholar

[32] B. Meriga, R. Mopuri, T. MuraliKrishna, Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac. J. Trop. Med. 5(5) (2012) 391-395.

DOI: 10.1016/S1995-7645(12)60065-0

Google Scholar

[33] A. Sameer, S. U. Khan, T. Ahmed, H. Ahmed, A. K. Tanoli, A. Khan, Decolorization of Some Reactive Dyes Using Vegetable Extract. Pak. J. Chem. 7 (2017) 1-4.

DOI: 10.15228/2017.v07.i01-4.p01

Google Scholar

[34] J. Singh, G. P. Singh, R. K. Jain, B. Singh, K. J. Singh, R. C. Singh, Effect of calcination temperature on structural, optical and antibacterial properties of ball mill synthesized Co3O4 nanomaterials. J. Mater. Sci.: Mater. Electron. 33(6) (2022) 3250-3266.

DOI: 10.1007/s10854-021-07526-6

Google Scholar

[35] A. Safdar, H. E. A. Mohamed, K. Hkiri, A. Muhaymin, M. Maaza, Green synthesis of cobalt oxide nanoparticles using hyphaenethebaica fruit extract and their photocatalytic application. Appl. Sci. 13 (16) (2023) 9082.

DOI: 10.3390/app13169082

Google Scholar

[36] A. Polyakov, T. Alekseeva, I. Muravieva, The elemental composition of garlic (Allium sativum L) and its variability. E3S Web Conf. 175 (2020) 01016.

DOI: 10.1051/e3sconf/202017501016

Google Scholar

[37] H. Hacıseferoğulları, M. Özcan, F. Demir, S. Çalışır, Some nutritional and technological properties of garlic (Allium sativum L). J. Food Eng. 68(4) (2005) 463-469.

DOI: 10.1016/j.jfoodeng.2004.06.024

Google Scholar

[38] Y. A. Attia, S. H. Abdel-Hafez, Nano-Co3O4-catalyzed microwave-assisted one-pot synthesis of some seleno [2, 3-b] pyridine/quinoline derivatives. Res. Chem. Intermed. 47(9) (2021) 3719-3732.

DOI: 10.1007/s11164-021-04478-8

Google Scholar

[39] B. K. Mandal, P. S. Chauhan, R. Das, Structural and optical properties of green-synthesised tricobalt tetroxide nanoparticles. Phy. Scr. 99(8) (2024) 085990.

DOI: 10.1088/1402-4896/ad629f

Google Scholar

[40] L-H. Ali, J. Jiang, Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method. Powder Technol. 195 (1) (2009) 11-14.

DOI: 10.1016/j.powtec.2009.05.006

Google Scholar

[41] S. R. Gawali, A. C. Gandhi, S. S. Gaikwad, J. Pant, T. S. Chan, C. L. Cheng, Y. R. Ma, S.Y. Wu, Role of cobalt cations in short range antiferromagnetic Co3O4 nanoparticles: a thermal treatment approach to affecting phonon and magnetic properties. Sci. Rep. 8(1) (2018) 249.

DOI: 10.1038/s41598-017-18563-9

Google Scholar

[42] W. L. Roth, The magnetic structure of Co3O4. J. Phys. Chem. Solids 25(1) (1964) 1-10.

DOI: 10.1016/0022-3697(64)90156-8

Google Scholar

[43] Y. Ichiyanagi, Y. Kimishima, S. Yamada, Magnetic study on Co3O4 nanoparticles. J. Magn. Magn. Mater. 272(2004) E1245–E1246.

DOI: 10.1016/j.jmmm.2003.12.377

Google Scholar

[44] Y. Koseoglu, F. Kurtulus, H. Kockar, H. Guler, O. Karaagac, S. Kazan, B. Aktas, Magnetic characterizations of cobalt oxide nanoparticles. J. supercond. nov.magn. 25(2012) 2783-2787.

DOI: 10.1007/s10948-011-1265-7

Google Scholar

[45] P. Dutta, M. S. Seehra, S. Thota, J. Kumar, A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4. J. Phys. Condens. Matter 20(1) (2008) 015218.

DOI: 10.1088/0953-8984/20/01/015218

Google Scholar

[46] H. Jin, X. Gu, B. Hong, L. Lin, C. Wang, D. Jin, X. Peng, X. Wang, H. Ge, Fabrication of Mesoporous Co3O4 from LP-FDU-12 via Nanocasting Route and Effect of Wall/Pore Size on Their Magnetic Properties. J. Phys. Chem. C 116(24) (2012) 13374–13381.

DOI: 10.1021/jp300645c

Google Scholar

[47] S. Farhadi, J. Safabakhsh, P. Zaringhadam, Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. J. Nanostruct. Chem. 3 (2013) 69.

DOI: 10.1186/2193-8865-3-69

Google Scholar

[48] T. Ozkaya, A. Baykal, Y. Koseoğlu, H. Kavas, Synthesis of Co3O4 nanoparticles by oxidation-reduction method and its magnetic characterization. Open Chem. 7(3) (2009) 410-414.

DOI: 10.2478/s11532-009-0012-4

Google Scholar

[49] S. A. Makhlouf, Magnetic properties of Co3O4 nanoparticles. J. Magn. Magn. Mater. 246 (1-2) (2002) 184-190.

DOI: 10.1016/S0304-8853(02)00050-1

Google Scholar

[50] T. A. Kurniawan, Z. Mengting, D. Fu, S. K. Yeap, M. H. D. Othman, R. Avtar, T. Ouyang, Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. J. Environ. Manag. 270 (2020) 110871.

DOI: 10.1016/j.jenvman.2020.110871

Google Scholar

[51] B. K. Mandal, R. Mandal, S. Sikdar, S. Sarma, A. Srinivasan, S. R. Chowdhury, B. Das, R. Das, Green synthesis of NiO nanoparticle using Punica granatum peel extract and its characterization for methyl orange degradation, Mater. Today Commun. 34 (2023) 105302.

DOI: 10.1016/j.mtcomm.2022.105302

Google Scholar

[52] A. B. Vennela, D. Mangalaraj, N. Muthukumarasamy, S. Agilan, K. V. Hemalatha, Structural and optical properties of Co3O4 nanoparticles prepared by sol-gel technique for photocatalytic application. Int. J. Electrochem. Sci. 14(4) (2019) 3535–3552.

DOI: 10.20964/2019.04.40

Google Scholar

[53] P. Chelliah, S. M. Wabaidur, H. P. Sharma, M. J. Jweeg, H. S. Majdi, M. M. R. AL. Kubaisy, A. Iqbal, W. C. Lai, Green Synthesis and Characterizations of Cobalt Oxide Nanoparticles and Their Coherent Photocatalytic and Antibacterial Investigations. Water.  15(5) (2023) 910.

DOI: 10.3390/w15050910

Google Scholar

[54] R. Tomar, A. A. Abdala, R. G. Chaudhary, N.B. Singh, Photocatalytic degradation of dyes by nanomaterials. Mater. Today Proc. 29 (2020) 967–973.

DOI: 10.1016/j.matpr.2020.04.144

Google Scholar

[55] U. M. Garusinghe, V. S. Raghuwanshi, W. Batchelor, G. Garnier, Water resistant cellulose–titanium dioxide composites for photocatalysis. Sci. Rep. 8(1) (2018) 2306. https://.

DOI: 10.1038/s41598-018-20569-w

Google Scholar

[56] Y. Sha, I. Mathew, Q. Cui, M. Clay, F. Gao, X. J. Zhang, Z. Gu, Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere. 144 (2016) 1530-1535.

DOI: 10.1016/j.chemosphere.2015.10.040

Google Scholar

[57] M. Ismail, S. Gul, M. I. Khan, M. A. Khan, A. M. Asiri, S. B. Khan, Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Process. Synth. 8(1) (2019) 135-143.

DOI: 10.1515/gps-2018-0038

Google Scholar

[58] A. Khan, S. J. Shah, K. Mehmood, Awais, N. Ali, H. Khan, Synthesis of potent chitosan beads a suitable alternative for textile dye reduction in sunlight. J. Mater. Sci. Mater. Electron. 30 (2019) 406-414.

DOI: 10.1007/s10854-018-0305-5

Google Scholar