[1]
F. D. Chequer, G. A. R. de Oliveira, E. A. Ferraz, J. C. Cardoso, M. B. Zanoni, D. P. de Oliveira, Textile dyes: dyeing process and environmental impact. Eco-Friendly Textile Dyeing and Finishing, 6 (2013) 151–176.
DOI: 10.5772/53659
Google Scholar
[2]
G. K. Weldegebrieal, A. K. Sibhatu, Photocatalytic activity of biosynthesized α-Fe2O3 nanoparticles for the degradation of methylene blue and methyl orange dyes. Optik, 241 (2021) 167226.
DOI: 10.1016/j.ijleo.2021.167226
Google Scholar
[3]
S. Mitra, T. Mukherjee, P. Kaparaju, Prediction of methyl orange removal by iron decorated activated carbon using an artificial neural network. Environ. Technol. 42 (21) (2021) 3288–3303.
DOI: 10.1080/09593330.2020.1725648
Google Scholar
[4]
I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities. Arab J. Chem. 12 (7) (2019) 908-931.
DOI: 10.1016/j.arabjc.2017.05.011
Google Scholar
[5]
N. Hossain, Md. H. Mobarak, M. A. Mimona, Md. A. Islam, A. Hossain, F. T. Zohura, M. A. Chowdhury, Advances and significances of nanoparticles in semiconductor applications – A review. Results Eng. 19 (2023) 101347.
DOI: 10.1016/j.rineng.2023.101347
Google Scholar
[6]
S. Kumar, W. Ahlawat, G. Bhanjana, S. Heydarifard, M. M. Nazhad, N. Dilbaghi, Nanotechnology-based water treatment strategies. J. Nanosci. Nanotechnol. 14(2) (2014) 1838–1858.
DOI: 10.1166/jnn.2014.9050
Google Scholar
[7]
A. Arbab, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan, Y. Rui, Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 9 (2021) 629044.
DOI: 10.3389/fchem.2021.629054
Google Scholar
[8]
Q. Zhang, L. Yu, C. Xu, J. Zhao, H. Pan, M. Chen, Q. Xu, Diao G, Preparation of highly efficient and magnetically recyclable Fe3O4@C@Ru nanocomposite for the photocatalytic degradation of methylene blue in visible light. Appl. Surf. Sci. 483 (2019) 241-251.
DOI: 10.1016/j.apsusc.2019.03.225
Google Scholar
[9]
C. R. Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, B. S. Benjamin, A. M. E. Raj, K. Jeyadheepan, C. Sanjeeviraja, Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles. Ceramics International 41(8) (2015) 9301-9313.
DOI: 10.1016/j.ceramint.2015.03.238
Google Scholar
[10]
Y. Chen, Y. Zhang, S. Fu, Synthesis and characterization of Co3O4 hollow spheres. Mater. Lett. 61(3) (2007) 701-705.
DOI: 10.1016/j.matlet.2006.05.046
Google Scholar
[11]
L. Li, Y. Chu, Y. Liu, J. L. Song, D. Wang, X. W. Du, A facile hydrothermal route to synthesize novel Co3O4 nanoplates. Mater. Lett. 62(10-11) (2008) 1507-1510.
DOI: 10.1016/j.matlet.2007.09.012
Google Scholar
[12]
F. Gu, C. Li, Y. Hu, L. Zhang, Synthesis and optical characterization of Co3O4 nanocrystal. J. Cryst. Growth. 304(2) (2007) 369-373.
DOI: 10.1016/j.jcrysgro.2007.03.040
Google Scholar
[13]
R. M. Wang, C. M. Liu, H. Z. Zhang, C. P. Chen, L. Guo, H. B. Xu, S. H. Yang, Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic properties. Appl. Phys. Lett. 85(11) (2004) 2080-2082.
DOI: 10.1063/1.1789577
Google Scholar
[14]
D. Y. Kim, S. H. Ju, H. Y. Koo, S. K. Hong, Y. C. Kang, Synthesis of nanosized Co3O4 particles by spray pyrolysis. J. Alloys. Compd. 417(1-2) (2006) 254-258.
DOI: 10.1016/j.jallcom.2005.09.013
Google Scholar
[15]
A. U. Mane, K. Shalini, A. Wohlfart, A. Devi, S. A. Shivashankar, Strongly oriented thin films of Co3O4 deposited on single-crystal MgO (1 0 0) by low-pressure, low-temperature MOCVD. J. Cryst. Growth. 240(1-2) (2002) 157-163.
DOI: 10.1016/S0022-0248(02)00860-6
Google Scholar
[16]
Y. Xuan, R. Liu, Y. Q. Jia, Synthesis of a new series of compounds RE2Co2/3Nb4/3O7 and stability field diagram of RE2B2/3' B4/3 "O7 pyrochlore compounds. Mater. Chem. Phys. 53(3) (1998) 256-261.
DOI: 10.1016/S0254-0584(98)00002-9
Google Scholar
[17]
A. Rumplecker, F. Kleitz, E. L. Salabas, F. Schuth, Hard templating pathways for the synthesis of nanostructured porous Co3O4. Chem. Mater. 19(3) (2007) 485-496.
DOI: 10.1021/cm0610635
Google Scholar
[18]
W.W. Wang, Y. J. Zhu, Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods. Mater. Res. Bull. 40(11) (2005) 1929–1935.
DOI: 10.1016/j.materresbull.2005.06.004
Google Scholar
[19]
L. X. Yang, Y. J. Zhu, L. Li, L. Zhang, H. Tong, W. W. Wang, G.F. Cheng, J.F. Zhu, A Facile Hydrothermal Route to Flower‐Like Cobalt Hydroxide and Oxide. Eur. J. Inorg. Chem. 23 (2006) 4787.
DOI: 10.1002/ejic.200600553
Google Scholar
[20]
F. Mohandes, F. Davar, M. S. Niasari, Preparation of Co3O4 nanoparticles by nonhydrolytic thermolysis of [Co (Pht)(H2O)]n polymers. J. Magn. Magn. Mater. 322(7) (2010) 872-877.
DOI: 10.1016/j.jmmm.2009.11.019
Google Scholar
[21]
J. Jiang, L. Li, Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 61(27) (2007) 4894-4896.
DOI: 10.1016/j.matlet.2007.03.067
Google Scholar
[22]
L. Ren, P. Wang, Y. Han, C. Hu, B. Wei, Synthesis of CoC2O4· 2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles. Mater. Phys. Lett. 476(1-3) (2009) 78-83.
DOI: 10.1016/j.cplett.2009.06.015
Google Scholar
[23]
S. Farhadi, K. Pourzare, S. Sadeghinejad, Simple preparation of ferromagnetic Co3O4 nanoparticles by thermal dissociation of the [Co II (NH3)6](NO3)2 complex at low temperature. J. Nanostructure Chem. 3(1) (2013) 1-7.
DOI: 10.1186/2193-8865-3-16
Google Scholar
[24]
R. V. Kumar, T. Diamant, A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12(8) (2000) 2301-2305.
DOI: 10.1021/cm000166z
Google Scholar
[25]
S. W. Oh, H. J. Bang, Y. C. Bae, Y. K. Sun, Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J. Power Sources. 173(1) (2007) 502-509.
DOI: 10.1016/j.jpowsour.2007.04.087
Google Scholar
[26]
T.L. Lai, Y.L. Lai, C. Lee, Y.Y. Shu, C.B. Wang, Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol. Catal. Today. 131(1-4) (2008) 105-110.
DOI: 10.1016/j.cattod.2007.10.039
Google Scholar
[27]
P. Chelliah, S. M. Wabaidur, H. P. Sharma, M. J. Jweeg, H. S. Majdi, M. M. R. AL. Kubaisy, A. Iqbal, W. C. Lai, Green Synthesis and Characterizations of Cobalt Oxide Nanoparticles and Their Coherent Photocatalytic and Antibacterial Investigations. Water. 15(5) (2023) 910.
DOI: 10.3390/w15050910
Google Scholar
[28]
S. Z. Mohammadi, B. Lashkari, A. Khosravan, Green synthesis of Co3O4 nanoparticles by using walnut green skin extract as a reducing agent by using response surface methodology. Surf. Interface. 23 (2021) 100970.
DOI: 10.1016/j.surfin.2021.100970
Google Scholar
[29]
J. Dai, R. J. Mumper, Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 15(10) (2010) 7313–7352. https://.
DOI: 10.3390/molecules15107313
Google Scholar
[30]
A. Trabelsi, E. K. M. Amine, M. A. Abbassi, A. Horchani, L.Chekir-Ghedira, K. Ghedira, Phytochemical Study and Antibacterial and Antibiotic Modulation Activity of Punica granatum (Pomegranate) Leaves. Scientifica. 2020(1) (2020) 1-7.
DOI: 10.1155/2020/8271203
Google Scholar
[31]
C. W. Tsai, H. W. Chen, L. Y. Sheen, C. K. Lii, Garlic: Health benefits and actions. BioMedicine2(1) (2012) 17-29
DOI: 10.1016/j.biomed.2011.12.002
Google Scholar
[32]
B. Meriga, R. Mopuri, T. MuraliKrishna, Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac. J. Trop. Med. 5(5) (2012) 391-395.
DOI: 10.1016/S1995-7645(12)60065-0
Google Scholar
[33]
A. Sameer, S. U. Khan, T. Ahmed, H. Ahmed, A. K. Tanoli, A. Khan, Decolorization of Some Reactive Dyes Using Vegetable Extract. Pak. J. Chem. 7 (2017) 1-4.
DOI: 10.15228/2017.v07.i01-4.p01
Google Scholar
[34]
J. Singh, G. P. Singh, R. K. Jain, B. Singh, K. J. Singh, R. C. Singh, Effect of calcination temperature on structural, optical and antibacterial properties of ball mill synthesized Co3O4 nanomaterials. J. Mater. Sci.: Mater. Electron. 33(6) (2022) 3250-3266.
DOI: 10.1007/s10854-021-07526-6
Google Scholar
[35]
A. Safdar, H. E. A. Mohamed, K. Hkiri, A. Muhaymin, M. Maaza, Green synthesis of cobalt oxide nanoparticles using hyphaenethebaica fruit extract and their photocatalytic application. Appl. Sci. 13 (16) (2023) 9082.
DOI: 10.3390/app13169082
Google Scholar
[36]
A. Polyakov, T. Alekseeva, I. Muravieva, The elemental composition of garlic (Allium sativum L) and its variability. E3S Web Conf. 175 (2020) 01016.
DOI: 10.1051/e3sconf/202017501016
Google Scholar
[37]
H. Hacıseferoğulları, M. Özcan, F. Demir, S. Çalışır, Some nutritional and technological properties of garlic (Allium sativum L). J. Food Eng. 68(4) (2005) 463-469.
DOI: 10.1016/j.jfoodeng.2004.06.024
Google Scholar
[38]
Y. A. Attia, S. H. Abdel-Hafez, Nano-Co3O4-catalyzed microwave-assisted one-pot synthesis of some seleno [2, 3-b] pyridine/quinoline derivatives. Res. Chem. Intermed. 47(9) (2021) 3719-3732.
DOI: 10.1007/s11164-021-04478-8
Google Scholar
[39]
B. K. Mandal, P. S. Chauhan, R. Das, Structural and optical properties of green-synthesised tricobalt tetroxide nanoparticles. Phy. Scr. 99(8) (2024) 085990.
DOI: 10.1088/1402-4896/ad629f
Google Scholar
[40]
L-H. Ali, J. Jiang, Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method. Powder Technol. 195 (1) (2009) 11-14.
DOI: 10.1016/j.powtec.2009.05.006
Google Scholar
[41]
S. R. Gawali, A. C. Gandhi, S. S. Gaikwad, J. Pant, T. S. Chan, C. L. Cheng, Y. R. Ma, S.Y. Wu, Role of cobalt cations in short range antiferromagnetic Co3O4 nanoparticles: a thermal treatment approach to affecting phonon and magnetic properties. Sci. Rep. 8(1) (2018) 249.
DOI: 10.1038/s41598-017-18563-9
Google Scholar
[42]
W. L. Roth, The magnetic structure of Co3O4. J. Phys. Chem. Solids 25(1) (1964) 1-10.
DOI: 10.1016/0022-3697(64)90156-8
Google Scholar
[43]
Y. Ichiyanagi, Y. Kimishima, S. Yamada, Magnetic study on Co3O4 nanoparticles. J. Magn. Magn. Mater. 272(2004) E1245–E1246.
DOI: 10.1016/j.jmmm.2003.12.377
Google Scholar
[44]
Y. Koseoglu, F. Kurtulus, H. Kockar, H. Guler, O. Karaagac, S. Kazan, B. Aktas, Magnetic characterizations of cobalt oxide nanoparticles. J. supercond. nov.magn. 25(2012) 2783-2787.
DOI: 10.1007/s10948-011-1265-7
Google Scholar
[45]
P. Dutta, M. S. Seehra, S. Thota, J. Kumar, A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4. J. Phys. Condens. Matter 20(1) (2008) 015218.
DOI: 10.1088/0953-8984/20/01/015218
Google Scholar
[46]
H. Jin, X. Gu, B. Hong, L. Lin, C. Wang, D. Jin, X. Peng, X. Wang, H. Ge, Fabrication of Mesoporous Co3O4 from LP-FDU-12 via Nanocasting Route and Effect of Wall/Pore Size on Their Magnetic Properties. J. Phys. Chem. C 116(24) (2012) 13374–13381.
DOI: 10.1021/jp300645c
Google Scholar
[47]
S. Farhadi, J. Safabakhsh, P. Zaringhadam, Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. J. Nanostruct. Chem. 3 (2013) 69.
DOI: 10.1186/2193-8865-3-69
Google Scholar
[48]
T. Ozkaya, A. Baykal, Y. Koseoğlu, H. Kavas, Synthesis of Co3O4 nanoparticles by oxidation-reduction method and its magnetic characterization. Open Chem. 7(3) (2009) 410-414.
DOI: 10.2478/s11532-009-0012-4
Google Scholar
[49]
S. A. Makhlouf, Magnetic properties of Co3O4 nanoparticles. J. Magn. Magn. Mater. 246 (1-2) (2002) 184-190.
DOI: 10.1016/S0304-8853(02)00050-1
Google Scholar
[50]
T. A. Kurniawan, Z. Mengting, D. Fu, S. K. Yeap, M. H. D. Othman, R. Avtar, T. Ouyang, Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. J. Environ. Manag. 270 (2020) 110871.
DOI: 10.1016/j.jenvman.2020.110871
Google Scholar
[51]
B. K. Mandal, R. Mandal, S. Sikdar, S. Sarma, A. Srinivasan, S. R. Chowdhury, B. Das, R. Das, Green synthesis of NiO nanoparticle using Punica granatum peel extract and its characterization for methyl orange degradation, Mater. Today Commun. 34 (2023) 105302.
DOI: 10.1016/j.mtcomm.2022.105302
Google Scholar
[52]
A. B. Vennela, D. Mangalaraj, N. Muthukumarasamy, S. Agilan, K. V. Hemalatha, Structural and optical properties of Co3O4 nanoparticles prepared by sol-gel technique for photocatalytic application. Int. J. Electrochem. Sci. 14(4) (2019) 3535–3552.
DOI: 10.20964/2019.04.40
Google Scholar
[53]
P. Chelliah, S. M. Wabaidur, H. P. Sharma, M. J. Jweeg, H. S. Majdi, M. M. R. AL. Kubaisy, A. Iqbal, W. C. Lai, Green Synthesis and Characterizations of Cobalt Oxide Nanoparticles and Their Coherent Photocatalytic and Antibacterial Investigations. Water. 15(5) (2023) 910.
DOI: 10.3390/w15050910
Google Scholar
[54]
R. Tomar, A. A. Abdala, R. G. Chaudhary, N.B. Singh, Photocatalytic degradation of dyes by nanomaterials. Mater. Today Proc. 29 (2020) 967–973.
DOI: 10.1016/j.matpr.2020.04.144
Google Scholar
[55]
U. M. Garusinghe, V. S. Raghuwanshi, W. Batchelor, G. Garnier, Water resistant cellulose–titanium dioxide composites for photocatalysis. Sci. Rep. 8(1) (2018) 2306. https://.
DOI: 10.1038/s41598-018-20569-w
Google Scholar
[56]
Y. Sha, I. Mathew, Q. Cui, M. Clay, F. Gao, X. J. Zhang, Z. Gu, Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere. 144 (2016) 1530-1535.
DOI: 10.1016/j.chemosphere.2015.10.040
Google Scholar
[57]
M. Ismail, S. Gul, M. I. Khan, M. A. Khan, A. M. Asiri, S. B. Khan, Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Process. Synth. 8(1) (2019) 135-143.
DOI: 10.1515/gps-2018-0038
Google Scholar
[58]
A. Khan, S. J. Shah, K. Mehmood, Awais, N. Ali, H. Khan, Synthesis of potent chitosan beads a suitable alternative for textile dye reduction in sunlight. J. Mater. Sci. Mater. Electron. 30 (2019) 406-414.
DOI: 10.1007/s10854-018-0305-5
Google Scholar