Preparation of Manganese Doped Copper Sulphide Nanoparticles by Cost-Favourable Chemical Method at Room Temperature

Article Preview

Abstract:

Copper sulphide (Cu2S) is an indirect gap p-type semiconductor belonging to I-VI group. The wet chemical route was used to synthesize manganese (Mn) doped copper sulphide nanoparticles with a decrease in particle size by increasing the concentration of manganese element. These nanoparticles were analyzed by using the various characterization techniques like ultraviolet-visible (UV) absorption spectroscopy, photoluminescence (PL) spectroscopy and transmission electron microscopy (TEM). The dip coating method was used to prepare Mn doped Cu2S thin films on fluorine doped tin oxide (FTO) glass slides with varying the dip time. These thin films were heat treated in air atmosphere at 420°C for 20 minutes and investigated by using the various analysis techniques like scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive analysis by X-rays (EDAX) and mapping. The detailed explanation of obtained experimental results is discussed in this paper.

You might also be interested in these eBooks

Info:

Pages:

43-57

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Patil, D. Sharma, A. Dive, S. Mahajan, R. Sharma, Synthesis and characterization of Cu2S thin film deposited by chemical bath deposition method, Procedia manufacturing 20 (2018) 505-508.

DOI: 10.1016/j.promfg.2018.02.075

Google Scholar

[2] M.S. Darekar, B.M. Praveen, High photosensitivity nanocrystalline p-Cu2S/n-FTO heterojunction photodetectors prepared by dip coating method, J. Mod. Nanotechnol. 3:1 (2023).

DOI: 10.53964/jmn.2023001

Google Scholar

[3] M.S. Darekar, B.M. Praveen, Synthesis and characterization of nanoparticles of semiconducting metal sulphide and their application, Phys. Scr. 97 (2022) 065805.

DOI: 10.1088/1402-4896/ac698f

Google Scholar

[4] J.P. Tailor, S.H. Chaki, M.P. Deshpande, Comparative study between pure and manganese doped copper sulphide (CuS) nanoparticles, Nano. Express 2 (2021) 010011.

DOI: 10.1088/2632-959x/abdc0d

Google Scholar

[5] L. Thilagavathi, M. Venkatachalam, M. Saroja, T.S. Senthil, An Extrapolation of Manganese Mn Incapacitated Copper Sulphide (CuS) Nano Particles By Hydrothermal Method, IJCRT. 10 (2022) b255-b262.

Google Scholar

[6] M.S. Darekar, B.M. Praveen, Effects of heat treatment in air atmosphere on dip coating deposited CdS thin films for photo sensor applications, J. Mod. Nanotechnol. 3:2 (2023).

DOI: 10.53964/jmn.2023002

Google Scholar

[7] M.S. Darekar, B.M. Praveen, Hyperfine Splitting and Ferromagnetism in CdS:Mn Nanoparticles for Optoelectronic Device Applications, J. Semicond. 44 (2023) 122502.

DOI: 10.1088/1674-4926/44/12/122502

Google Scholar

[8] J. Kaur, M. Sharma, O.P. Pandey, Structural and optical studies of undoped and copper doped zinc sulphide nanoparticles for photocatalytic application, Superlattices and Microstructures 77 (2015) 35-53.

DOI: 10.1016/j.spmi.2014.10.032

Google Scholar

[9] A. Aboulaich, L. Balan, J. Ghanbaja, G. Medjahdi, C. Merlin, R. Schneider, Aqueous route to biocompatible ZnSe:Mn/ZnO core /shell quantum dots using 1-thioglycerol as stabilizer, Chem. Mater. 23 (2011) 3706-3713.

DOI: 10.1021/cm2012928

Google Scholar

[10] M. Geszke-Moritz, H. Piotrowska, M. Murias, L. Balan, Thioglycerol-capped Mn-doped ZnS quantum dot bioconjugates as efficient two-photon fluorescent nano-probes for bioimaging, J. Mater. Chem. B 1 (2012) 698.

DOI: 10.1039/c2tb00247g

Google Scholar

[11] C. Tan, H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials, Nat. Commun. 6 (2015) 7873.

DOI: 10.1038/ncomms8873

Google Scholar

[12] M. Wang, Q. Huang, R. Ma, S. Wang, X. Li, Y. Hu, S. Zhu, M. Zhang, Q. Huang, Construction of Mn doped Cu7S4 nanozymes for synergistic tumor therapy in NIR-I/II bio-windows, Colloids and Surfaces B: Biointerfaces 234 (2024) 113689.

DOI: 10.1016/j.colsurfb.2023.113689

Google Scholar

[13] E.I. D-Garcia, J.M-Santana, N.T-Gomez, A.R. V-Nestor, I.G-Orozco, Copper sulphide nanoparticles produced by the reaction of N-alkyldithiocarbamatecopper(II) complexes with sodium borohydride, Materials Chemistry and Physics 269 (2021) 124743.

DOI: 10.1016/j.matchemphys.2021.124743

Google Scholar

[14] A.M.E.A. ElRahman, K.H. Osman, N. Hassan, Significance of synthesized digenite phase of copper sulphide nanoparticles as a photocatalyst for degradation of bromophenol blue from contaminated water, Applied Sciences 6 (2024).

DOI: 10.1007/s42452-024-05671-1

Google Scholar

[15] O.N. Hussein, S.M.H. Aijawad, N.J. Imran, Efficient antibacterial activity enhancement in Fe/Mn co-doped CuS nanoflowers and nanosponges, Bull. Mater. Sci. 46 (2023) 139.

DOI: 10.1007/s12034-023-02964-w

Google Scholar

[16] K.R. Kadhim, R.Y. Mohammed, Effects of annealing time on structure, morphology, and optical properties of nanostructured CdO thin films prepared by CBD technique, Crystals 12 (2022) 1315.

DOI: 10.3390/cryst12091315

Google Scholar

[17] S.R. Suresh, Studies on the dielectric properties of CdS nanoparticles, Applied Nanoscience 4 (2013) 325-329.

Google Scholar

[18] L.E. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys. 79 (1983) 5566-5571.

DOI: 10.1063/1.445676

Google Scholar

[19] L.E. Brus, Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 80 (1984) 4403-4409.

DOI: 10.1063/1.447218

Google Scholar

[20] L.E. Brus, Electronic wave functions in semiconductor clusters: Experiment and theory, J. Phys. Chem. 90 (1986) 2555-2560.

DOI: 10.1021/j100403a003

Google Scholar

[21] H.F. Al-Taay, Preparation and Characterization of Chemical Bath Deposition synthesis CdS Nanocrystalline Thin Films, Iraqi Journal of Science 58 (2017) 454-461.

DOI: 10.24996/ijs.2017.58.1c.9

Google Scholar

[22] R.I. Chowdhury, M.A. Hossen, G. Mustafa, S. Hussain, S.N. Rahman, S.F. Farhad, K. Murata, T. Tambo, A.B. Islam, Characterization of chemically deposited cadmium sulfide thin films, International Journal of Modern Physics B 24 (2010) 5901-5911.

DOI: 10.1142/s0217979210055147

Google Scholar

[23] B. Uddin, Md.O. Farque, Md. Moniruzzaman, Md.J. Uddin, Md.K. Hossain, S.H. Begum, Enhancing the photocatalytic properties of nickel oxide nanoparticles via iron doping: Efficient degradation of eosin yellow dye, Chemical Physics Impact 10 (2024) 100798.

DOI: 10.1016/j.chphi.2024.100798

Google Scholar

[24] F. Asaldoust, K. Mabhouti, A. Jafari, M.T. Abbasi, Structural, magnetic, and optical characteristics of undoped and chromium, iron, cobalt, copper, and zinc doped nickel oxde nanopowders, Scientific Reports 15 (2025) 1088.

DOI: 10.1038/s41598-025-85239-0

Google Scholar

[25] N. Roushdy, M.S. Elnouby, A.A.M. Farag, M. Ramadan, O. El-Shazly, E.F. El-Wahidy, Structural and electrical characterization of nickel sulphide nanoparticles, Optical and Quantum Electronics 56 (2024) 1794.

DOI: 10.1007/s11082-024-07585-z

Google Scholar

[26] S.C. Lims, M. Jose, S. Aswathappa, S.S.J. Dhas, R.S. Kumar, P.V. Pham, Co-precipitation synthesis of highly pure and Mg-doped CdO nanoparticles: from rod to sphere shapes, RSC. Adv. 14 (2024) 22690-22700.

DOI: 10.1039/d4ra03525a

Google Scholar

[27] R. Deep, T. Yoshida, Y. Fujita, Defects in nitrogen-doped ZnO nanoparticles and their effect on light-emitting diodes, Nanomaterials 14 (2024) 977.

DOI: 10.3390/nano14110977

Google Scholar

[28] S.Y. Gezgin, W. Belaid, M.A. Basyooni-M. Kabatas, Y.R. Eker, H.S. Kilic, Microstrain effects of laser-ablated Au nanoparticles in enhancing CZTS-based 1 sun photodetector devices, Phys. Chem. Chem. Phys. 26 (2024) 9534-9545.

DOI: 10.1039/d4cp00238e

Google Scholar

[29] Md. J. Uddin, Mst. S. Yeasmin, A.A. Muzahid, Md. M. Rahman, GM, M. Rana, T.A. Chowdhury, Md. AL-Amin, Md. K. Wakib, S.H. Begum, Morphostructural studies of pure and mixed metal oxide nanoparticles of Cu with Ni and Zn, Heliyon 10 (2024) e30544.

DOI: 10.1016/j.heliyon.2024.e30544

Google Scholar

[30] E.A. Volnistem, R.C. Oliveira, G.H. Perin, G.S. Dias, M.A.C. de Melo, L.F. Cotica, I.A. Santos, S. Sullow, D. Baabe, F.J. Litterst, Controlled dislocation density as enhancer of the magnetic response in multiferroic oxide nanoparticles, Applied Materials Today 29 (2022) 101680.

DOI: 10.1016/j.apmt.2022.101680

Google Scholar

[31] I.M. Dharmadasa, P.A. Bingham, O.K. Echendu, H.I. Salim, T. Druffel, R. Dharmadasa, G.U. Sumanasekera, R.R. Dharmasena, M.B. Dergacheva, K.A. Mit, K.A. Urazov, L. Bowen, M. Walls, A. Abbas, Fabrication of CdS/CdTe-based thin film solar cells using an electrochemical technique, Coatings 4 (2014) 380-415.

DOI: 10.3390/coatings4030380

Google Scholar

[32] S.U. Shaikh, D.J. Desale, F.Y. Siddiqui, A. Ghosh, R.B. Birajadar, A.V. Ghule, R. Sharma, Effects of air annealing on CdS quantum dots thin film grown at room temperature by CBD technique intended for photosensor applications, Materials Research Bulletin 47 (2012) 3440-3444.

DOI: 10.1016/j.materresbull.2012.07.009

Google Scholar