A Facile In-Situ Synthesis and Characterizations of Silver-Graphene Oxide (AgGO) Nanocomposite Using Chives as a Reducing and Stabilizing Agent

Article Preview

Abstract:

The Silver-graphene oxide (AgGO) nanocomposite is highly regarded for controlling the biological activity of silver nanoparticles (AgNPs). Combining AgNPs with Graphene Oxide (GO) offers better stability than single AgNPs. Traditional chemical synthesis methods use toxic reducing agents, posing environmental risks. This study aims to synthesize AgGO nanocomposite using a green synthesis method with chives (Allium tuberosum) extract as a reducing and stabilizing agent. The reducing properties of chives extract are attributed to its sulfur-containing compounds play a crucial role in the reduction of silver ions to silver nanoparticles. AgGO nanocomposite was synthesized with different chives extract concentrations (0.5 M, 1.1 M, and 2.0 M) and confirmed using UV-Visible spectrometer, X-Ray Diffraction (XRD), and High-resolution transmission electron microscopy (HRTEM). The 1.1 M concentration was the most efficient, forming AgNPs at 430 nm with an average particle size of 18 nm. The antibacterial activity against E. coli and S. aureus was assessed, revealing that AgGO-1.1 has significant antibacterial capabilities comparable to pure AgNPs.

You might also be interested in these eBooks

Info:

Pages:

35-42

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Adams, F. C. and Barbante, C. (2013). Nanoscience, nanotechnology and spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 86, 3-13.

DOI: 10.1016/j.sab.2013.04.008

Google Scholar

[2] Fatima, T. and Mushtaq, A. (2023). Efficacy and challenges of carbon-based nanomaterials in water treatment: A review. Int. J. Chem. Biochem. Sci, 23, 232-248.

Google Scholar

[3] Sundar, L. S., Mir, M. A., Ashraf, M. W. and Djavanroodi, F. (2023). Synthesis and characterization of graphene and its composites for Lithium-Ion battery applications: A comprehensive review. Alexandria Engineering Journal.

DOI: 10.1016/j.aej.2023.07.044

Google Scholar

[4] Kumari, S., Sharma, P., Yadav, S., Kumar, J., Vij, A., Rawat, P., Kumar, S., Sinha, C., Bhattacharya, J., Srivastava, C.M. and Majumder, S. (2020). A novel synthesis of the graphene oxide-silver (GO-Ag) nanocomposite for unique physiochemical applications. ACS omega, 5(10), 5041-5047.

DOI: 10.1021/acsomega.9b03976

Google Scholar

[5] Khan, F., Khan, M. S., Kamal, S., Arshad, M., Ahmad, S. I. and Nami, S. A. (2020). Recent advances in graphene oxide and reduced graphene oxide-based nanocomposites for the photodegradation of dyes. Journal of Materials Chemistry C, 8(45), 15940-15955.

DOI: 10.1039/d0tc03684f

Google Scholar

[6] Mishra, Y., Mishra, V., Chattaraj, A., Aljabali, A.A., El-Tanani, M., Farani, M.R., Huh, Y.S., Serrano-Aroca, Ã. and Tambuwala, M.M. (2023). Carbon nanotube-wastewater treatment nexus: Where are we heading to?. Environmental Research, 117088.

DOI: 10.1016/j.envres.2023.117088

Google Scholar

[7] Li, J., Dadmohammadi, Y. and Abbaspourrad, A. (2022). Flavor components, precursors, formation mechanisms, production and characterization methods: Garlic, onion, and chili pepper flavors. Critical Reviews in Food Science and Nutrition, 62(30), 8265-8287.

DOI: 10.1080/10408398.2021.1926906

Google Scholar

[8] Yang, W., Pan, M., Huang, C., Zhao, Z., Wang, J. and Zeng, H. (2021). Graphene oxide‐based noble‐metal nanoparticles composites for environmental application. Composites Communications, 24, 100645.

DOI: 10.1016/j.coco.2021.100645

Google Scholar

[9] Hai, N.D., Dat, N.M., Nam, N.T.H., An, H., Tai, L.T., Huong, L.M., Cong, C.Q., Giang, N.T.H., Tinh, N.T. and Hieu, N.H. (2023). A review on the chemical and biological synthesis of silver nanoparticles@ graphene oxide nanocomposites: A comparison. Materials Today Sustainability, 24, 100544.

DOI: 10.1016/j.mtsust.2023.100544

Google Scholar

[10] Terry, L. R., Sanders, S., Potoff, R. H., Kruel, J. W., Jain, M. and Guo, H. (2022). Applications of surface‐enhanced Raman spectroscopy in environmental detection. Analytical Science Advances, 3(3-4), 113-145.

DOI: 10.1002/ansa.202200003

Google Scholar

[11] Riaz, A., Lagnika, C., Luo, H., Nie, M., Dai, Z., Liu, C., Abdin, M., Hashim, M.M., Li, D. and Song, J. (2020). Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films. Carbohydrate polymers, 235, 115944.

DOI: 10.1016/j.carbpol.2020.115944

Google Scholar

[12] Selvamani, V. (2019). Stability studies on nanomaterials used in drugs. In Characterization and biology of nanomaterials for drug delivery (pp.425-444). Elsevier.

DOI: 10.1016/b978-0-12-814031-4.00015-5

Google Scholar

[13] Ali, M. H., Azad, M. A. K., Khan, K. A., Rahman, M. O., Chakma, U. and Kumer, A. (2023). Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques. ACS omega, 8(31), 28133-28142.

DOI: 10.1021/acsomega.3c01261

Google Scholar

[14] Wang, L., Qiu, J., Guo, J., Wang, D., Qian, S., Cao, H. and Liu, X. (2019). Regulating the behavior of human gingival fibroblasts by sp2 domains in reduced graphene oxide. ACS Biomaterials Science & Engineering, 5(12), 6414-6424.

DOI: 10.1021/acsbiomaterials.9b00497

Google Scholar

[15] Yu, Z., Xu, Y., & Tian, X. (2022). Silver-modified graphene oxide nanosheets for antibacterial performance of bone scaffold. AIP Advances, 12(1).

DOI: 10.1063/5.0079975

Google Scholar

[16] Angulo-Pineda, C., Palma, P., Bejarano, J., Riveros, A., Kogan, M., & Palza, H. (2019). Antibacterial Silver Nanoparticles Supported on Graphene Oxide with Reduced Cytotoxicity. Jom, 71(10), 3698–3705.

DOI: 10.1007/s11837-019-03633-2

Google Scholar

[17] Ahmad, M. A., Aslam, S., Mustafa, F., & Arshad, U. (2021). Synergistic antibacterial activity of surfactant free Ag–GO nanocomposites. Scientific Reports, 11(1), 1–9.

DOI: 10.1038/s41598-020-80013-w

Google Scholar

[18] Bu, Y., Kushwaha, A., Goswami, L., & Kim, B. S. (2022). Green Production of Functionalized Few-Layer Graphene–Silver Nanocomposites Using Gallnut Extract for Antibacterial Application. Micromachines, 13(8).

DOI: 10.3390/mi13081232

Google Scholar