[1]
Adams, F. C. and Barbante, C. (2013). Nanoscience, nanotechnology and spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 86, 3-13.
DOI: 10.1016/j.sab.2013.04.008
Google Scholar
[2]
Fatima, T. and Mushtaq, A. (2023). Efficacy and challenges of carbon-based nanomaterials in water treatment: A review. Int. J. Chem. Biochem. Sci, 23, 232-248.
Google Scholar
[3]
Sundar, L. S., Mir, M. A., Ashraf, M. W. and Djavanroodi, F. (2023). Synthesis and characterization of graphene and its composites for Lithium-Ion battery applications: A comprehensive review. Alexandria Engineering Journal.
DOI: 10.1016/j.aej.2023.07.044
Google Scholar
[4]
Kumari, S., Sharma, P., Yadav, S., Kumar, J., Vij, A., Rawat, P., Kumar, S., Sinha, C., Bhattacharya, J., Srivastava, C.M. and Majumder, S. (2020). A novel synthesis of the graphene oxide-silver (GO-Ag) nanocomposite for unique physiochemical applications. ACS omega, 5(10), 5041-5047.
DOI: 10.1021/acsomega.9b03976
Google Scholar
[5]
Khan, F., Khan, M. S., Kamal, S., Arshad, M., Ahmad, S. I. and Nami, S. A. (2020). Recent advances in graphene oxide and reduced graphene oxide-based nanocomposites for the photodegradation of dyes. Journal of Materials Chemistry C, 8(45), 15940-15955.
DOI: 10.1039/d0tc03684f
Google Scholar
[6]
Mishra, Y., Mishra, V., Chattaraj, A., Aljabali, A.A., El-Tanani, M., Farani, M.R., Huh, Y.S., Serrano-Aroca, Ã. and Tambuwala, M.M. (2023). Carbon nanotube-wastewater treatment nexus: Where are we heading to?. Environmental Research, 117088.
DOI: 10.1016/j.envres.2023.117088
Google Scholar
[7]
Li, J., Dadmohammadi, Y. and Abbaspourrad, A. (2022). Flavor components, precursors, formation mechanisms, production and characterization methods: Garlic, onion, and chili pepper flavors. Critical Reviews in Food Science and Nutrition, 62(30), 8265-8287.
DOI: 10.1080/10408398.2021.1926906
Google Scholar
[8]
Yang, W., Pan, M., Huang, C., Zhao, Z., Wang, J. and Zeng, H. (2021). Graphene oxide‐based noble‐metal nanoparticles composites for environmental application. Composites Communications, 24, 100645.
DOI: 10.1016/j.coco.2021.100645
Google Scholar
[9]
Hai, N.D., Dat, N.M., Nam, N.T.H., An, H., Tai, L.T., Huong, L.M., Cong, C.Q., Giang, N.T.H., Tinh, N.T. and Hieu, N.H. (2023). A review on the chemical and biological synthesis of silver nanoparticles@ graphene oxide nanocomposites: A comparison. Materials Today Sustainability, 24, 100544.
DOI: 10.1016/j.mtsust.2023.100544
Google Scholar
[10]
Terry, L. R., Sanders, S., Potoff, R. H., Kruel, J. W., Jain, M. and Guo, H. (2022). Applications of surface‐enhanced Raman spectroscopy in environmental detection. Analytical Science Advances, 3(3-4), 113-145.
DOI: 10.1002/ansa.202200003
Google Scholar
[11]
Riaz, A., Lagnika, C., Luo, H., Nie, M., Dai, Z., Liu, C., Abdin, M., Hashim, M.M., Li, D. and Song, J. (2020). Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films. Carbohydrate polymers, 235, 115944.
DOI: 10.1016/j.carbpol.2020.115944
Google Scholar
[12]
Selvamani, V. (2019). Stability studies on nanomaterials used in drugs. In Characterization and biology of nanomaterials for drug delivery (pp.425-444). Elsevier.
DOI: 10.1016/b978-0-12-814031-4.00015-5
Google Scholar
[13]
Ali, M. H., Azad, M. A. K., Khan, K. A., Rahman, M. O., Chakma, U. and Kumer, A. (2023). Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques. ACS omega, 8(31), 28133-28142.
DOI: 10.1021/acsomega.3c01261
Google Scholar
[14]
Wang, L., Qiu, J., Guo, J., Wang, D., Qian, S., Cao, H. and Liu, X. (2019). Regulating the behavior of human gingival fibroblasts by sp2 domains in reduced graphene oxide. ACS Biomaterials Science & Engineering, 5(12), 6414-6424.
DOI: 10.1021/acsbiomaterials.9b00497
Google Scholar
[15]
Yu, Z., Xu, Y., & Tian, X. (2022). Silver-modified graphene oxide nanosheets for antibacterial performance of bone scaffold. AIP Advances, 12(1).
DOI: 10.1063/5.0079975
Google Scholar
[16]
Angulo-Pineda, C., Palma, P., Bejarano, J., Riveros, A., Kogan, M., & Palza, H. (2019). Antibacterial Silver Nanoparticles Supported on Graphene Oxide with Reduced Cytotoxicity. Jom, 71(10), 3698–3705.
DOI: 10.1007/s11837-019-03633-2
Google Scholar
[17]
Ahmad, M. A., Aslam, S., Mustafa, F., & Arshad, U. (2021). Synergistic antibacterial activity of surfactant free Ag–GO nanocomposites. Scientific Reports, 11(1), 1–9.
DOI: 10.1038/s41598-020-80013-w
Google Scholar
[18]
Bu, Y., Kushwaha, A., Goswami, L., & Kim, B. S. (2022). Green Production of Functionalized Few-Layer Graphene–Silver Nanocomposites Using Gallnut Extract for Antibacterial Application. Micromachines, 13(8).
DOI: 10.3390/mi13081232
Google Scholar