Structural, Magnetic and Dynamic Mechanical Analysis of Magnetic Nanocomposite Foils by Polymer Ultrasonic Welding

Article Preview

Abstract:

The main goal of the work presented in this paper is to develop and characterize a manufacturing process that introduces a novel technology for manufacturing magnetic polyvinylchloride (PVC) nanocomposites, from stacked PVC foils, with intermediate sandwiched layers of uniformly dispersed ferro magnetic nanoparticles, by means of solid-state surface ultrasonic welding. Laboratory analysis of nanocomposite samples to investigate their behavior, is performed by microscopic, magnetic, and mechanical testing. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are employed for measuring nanoparticle dispersions and their distribution in the polymer matrix. The magnetic properties of the composites are measured by a physical property measurement system (PPMS), while mechanical behavior is studied by dynamic mechanical analyzer (DMA) and a universal mechanical testing system. The resulting materials are nanocomposite foils with very high ferromagnetic behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-47

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.E. Wilkes, J.W. Summers, C.A. Daniels, M.T. Berard, PVC Handbook, Hanser Verlag, (2005).

Google Scholar

[2] R.D. McMichael, R.D. Shull, L.J. Swartzendruber, L.H. Bennett, Magnetocaloric effect in superparamagnets, Journal of Magnetism and Magnetic Materials 111 (1992) 29-33.

DOI: 10.1016/0304-8853(92)91049-y

Google Scholar

[3] D. Lopez, I. Cendoya, F. Torres, J. Tejada and C. Mijangos, Preparation and characterization of polystyrene-based magnetic nanocomposites. Thermal, mechanical and magnetic properties, Polymer Engineering and Science 41 (2001) 1845-1852.

DOI: 10.1002/pen.10881

Google Scholar

[4] S. M. Phadke, Quality Engineering Using Robust Design, Prentice Hall: New Jersey, (1989).

Google Scholar

[5] A. Christophidou, D. Bica, N. Crainic, L. Vekas, C. Doumanidis, Structural and Dynamic Mechanical Analysis of Magnetic Nanocomposites by Polymer Ultrasonic Welding, 4th International Symposium on Nanomanufacturing, Boston, (2006).

Google Scholar

[6] A. Christophidou, C. Doumanidis, Ultrasonic Welding of Polymer Nanocomposites, 3th International Symposium on Nanomanufacturing, Cyprus, (2005).

Google Scholar

[7] O. S. Rodrıguez-Fernandez, C.A. Rodrıguez-Calzadıaz, I. G. Yanez-Flores, S. M. Montemayor, Preparation and characterization of magneto-polymeric nanocomposite: Fe3O4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix, Journal of Magnetism and Magnetic Materials 320 (2008).

DOI: 10.1016/j.jmmm.2008.02.020

Google Scholar

[8] I. G. Yanez-Flores, R. Betancourt-Galindo J. A. Matutes-Aquino, O. Rodrıguez-Fernandez, Preparation and characterization of magnetic PVC nanocomposites, Journal of NonCrystalline Solids 353 (2007) 799-801.

DOI: 10.1016/j.jnoncrysol.2006.12.109

Google Scholar

[9] M. Vazquez, C. Luna, M. P. Morales, R. Sanz, C. J. Serna, C. Mijangos, Magnetic nanoparticles: synthesis, ordering and properties, Physica B 354 (2004) 71-79.

DOI: 10.1016/j.physb.2004.09.027

Google Scholar

[10] X. L. Xie, Q. X. Liu, R. K. Y. Li, X. P. Zhou, Q. X. Zhang, Z. Z. Yu, Y. W. Mai, Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization, Polymer 45 (2004) 6665-6673.

DOI: 10.1016/j.polymer.2004.07.045

Google Scholar

[11] Y. Yoo, S.S. Kim, J.C. Won, K.Y. Choi, J.H. Lee, Enhancement of the thermal stability, mechanical properties and morphologies of recycled PVC/clay nanocomposites, Polymer Bulletin 52 (2004) 373-380.

DOI: 10.1007/s00289-004-0296-7

Google Scholar

[12] D. Bica, L. Vekas, M. V. Avdeev, M. Balasoiu, O. Marinica, F. D. Stoian, D. Susan-Resiga, G. Torok, L. Rosta, Magnetizable colloids on strongly polar carriers - preparation and manifold characterization, Progr. Colloid Polym. Sci. 125 (2004) 1-9.

DOI: 10.1007/978-3-540-45119-8_1

Google Scholar

[13] D. Bica, Preparation of magnetic fluids for various applications, Rom. Rep. Phys. 47 (1995) 265-272.

Google Scholar

[14] D. Bica, L. Vekas, M. Rasa, Preparation and magnetic properties of concentrated magnetic fluids on alcohol and water carrier liquids, J. Magn. Magn. Mater. 252 (2002) 10-12.

DOI: 10.1016/s0304-8853(02)00614-5

Google Scholar

[15] D. Bica, L. Vekas, M. V. Avdeev, O. Marinica, V. Socoliuc, M. Balasoiu, V. M. Garamus, Sterically stabilized water based magnetic fluids: synthesis, structure and properties, Journal of Magnetism and Magnetic Materials 311 (2007) 17-21.

DOI: 10.1016/j.jmmm.2006.11.158

Google Scholar

[16] S. Odenbach, Ferrofluids/magnetically controlled suspensions, Colloids and Surfaces A: Physicochem. Eng. Aspects 217 (2003) 171-178.

DOI: 10.1016/s0927-7757(02)00573-3

Google Scholar

[17] Z. Mao, B. C. Goswami, Studies on the Process of Ultrasonic Bonding of Nonwovens: Part 1 - Theoretical Analysis, International Nonwovens Journal (2001) 38-47.

DOI: 10.1177/1558925001os-01000210

Google Scholar

[18] A. Tsai, Mechanical and Thermal Modeling of Plastic Ultrasonic Welding Based on Variable Pressure Curves, a thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Mechanical Engineering, Tufts University (2002).

Google Scholar

[19] A. Benatar, T. Gutowski, Ultrasonic Welding of PEEK Graphite APC-2 Composites, Polymer Engineering and Science 29 (1989) 1705-1721.

DOI: 10.1002/pen.760292313

Google Scholar

[20] N. M. Tolunay, R. P. Dawson, K. K. Wang, Heating and Bonding Mechanisms in Ultrasonic Welding of Thermoplastics, Polymer Engineering and Science 23 (1983) 726-733.

DOI: 10.1002/pen.760231307

Google Scholar

[21] A. Benatar, R.V. Eswaran, S.K. Nayar, Ultrasonic welding of Thermoplastics in the Near-Field, Polymer Engineering and Science 29 (1989) 1689-1698.

DOI: 10.1002/pen.760292311

Google Scholar

[22] J. Loffler, H.V. Swygenhoven, W. Wagner, Influence of grain size and oxidation on the magnetic properties of nanostructured Fe and Ni, NanoStructured Materials 9 (1997) 523-526.

DOI: 10.1016/s0965-9773(97)00115-3

Google Scholar