Heavy Ion Irradiation Effects on Cadmium Oxide (CdO) Quantum Dots Prepared by Quenching Method

Article Preview

Abstract:

Cadmium oxide (CdO) quantum dots were synthesized in the laboratory by quenching method using CdO powder sintered at 9000C and ethyl alcohol kept at ice cold temperature. X-ray diffraction investigations reveal the NaCl cubic structure of CdO quantum dots. Addition of ethylenediamine to a portion of reaction mixture containing quantum dots results in the conversion of nanoparticles to nanorods. Heavy ion irradiation using 90 MeV Carbon (C+6) ion beam accelerated at 15 UD Pelletron, with fluence varying from 1011 to 1013 ions/cm2 , produced enlargement in the size of quantum dots revealed by TEM investigations. Heavy ion irradiation effects need to be investigated further, in view of industrial applications of quantum dots.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-76

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.G. Lu , Z.Z. Ye, Y.Z. Zhang, Q.L. Liang, Sz. Fujita, Z.L. Wang, Self-assembled ZnO quantum dots with tunable optical properties, Appl. Phys. Lett.; 89 (2006) 023122-24.

DOI: 10.1063/1.2221892

Google Scholar

[2] R.E. Bailey, S. Nie, Alloyed semiconductor quantum dots: Tuning the optical propertieswithout changing the particle size, J. Am. Chem. Soc. 125 (2003) 7100-06.

DOI: 10.1021/ja035000o

Google Scholar

[3] N.N. Ledentsov, V.M. Ustinov, V.A. Shuchukin, P.S. Koplev, Zh.I. Alferov, D. Bimberg, Quantum dot heterostructures: fabrication, properties, lasers (Review), Semiconductors 32 (1998) 343-365.

DOI: 10.1134/1.1187396

Google Scholar

[4] A.C. Tuan, J.D. Bryan, A.B. Pakhomov, V. Shutthananadan, et al. Epitaxial growth and properties of cobalt-doped ZnO on α-Al2O3 single-crystal substrates. Phys. Rev. Lett. B 70 (2004) 054424-32.

Google Scholar

[5] G. Timp, Nanotechnology, Springer Verlag, New York, 2005, p.276.

Google Scholar

[6] S. Bandyopadhyay, H.S. Nalwa (Eds. ), Quantum Dots and Nanowires, American Scientific Publishers, NY, (2003).

Google Scholar

[7] B.J. Lockhande, P.S. Patil, M.D. Uplane, Studies on cadmium oxide sprayed thin films deposited through non-aqueous medium, Mater. Chem. & Phys. 84 (2004) 238.

DOI: 10.1016/s0254-0584(03)00231-1

Google Scholar

[8] A. Clifford, H. Gessner, G. Hawley, The Encyclopedia of Chemistry, 3rd ed., Hawley, 1973, p.169.

Google Scholar

[9] P.A. Radi, A.G. Brito-Madurro, J.M. Madurro, N.O. Dantas, Characterization and properties of CdO nanocrystals incorporated in polyacryalamide, Brazilian J. Phys. 36 (2006) 412-413.

DOI: 10.1590/s0103-97332006000300048

Google Scholar

[10] X.S. Peng, X.F. Wang, Y.W. Wang, C.Z. Wang, G.W. Meng, L.D. Zhang, Novel method synthesis of CdO nanowires, J. Phys. D.: Appl. Phys. 35 (2002) L101- L104.

DOI: 10.1088/0022-3727/35/20/103

Google Scholar

[11] S.S. Nath, D. Chakdar, G. Gope, D.K. Avasthi, Novel effect of Swift Heavy Ions on ZnO quantum dots prepared by quenching method, Nano Trends 3 (2007) 1-10.

Google Scholar

[12] L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Formation of ZnO Nanoparticles by the reaction of Zinc metal with aliphatic alcohols, J. Cluster Sci. 18 (2007) 660-670.

DOI: 10.1007/s10876-007-0129-6

Google Scholar

[13] M.A. Shah, Growth of Zinc oxide nanoparticles by the reaction of Zinc with ethanol, Adv. Mater. Res. 67 (2009) 215-219.

DOI: 10.4028/www.scientific.net/amr.67.215

Google Scholar

[14] J.F. Zeigler, Stopping range of ions in matter (SRIM-97), IBM Research, New York, 1997, pp.1-28.

Google Scholar

[15] H.S. Virk, P.S. Chandi, A.K. Srivastava, Physical and chemical changes induced by 70 MeV Carbon ions in PVDF Polymer, Nuc. Instrum. Meth. Phy. Res. B 183 (2001) 329-336.

DOI: 10.1016/s0168-583x(01)00743-1

Google Scholar

[16] A. Cimino, M. Mareqio, Lattice parameter and defect structure of cadmium oxide containing foreign atoms, J. Phys. Chem. Solids 17 (1960) 57.

DOI: 10.1016/0022-3697(60)90175-x

Google Scholar

[17] B. Lin, H.C. Zheng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125 (2003) 4430-31.

DOI: 10.1021/ja0299452

Google Scholar

[18] D. Mohanta, S.S. Nath, N.C. Mishra, A. Choudhury, Irradiation induced grain growth and surface emission enhancement of chemically tailored ZnS : Mn/PVOH nanoparticles by Cl+9 ion impact, Bull. Mater. Sci. 26(3) (2003) 289-294.

DOI: 10.1007/bf02707448

Google Scholar