Carbon Nanomaterials, Relevance to Solving the Hydrogen Storage Problem

Article Preview

Abstract:

Empiric evaluations of fundamental characteristics of interactions of gaseous hydrogen with different kinds of graphite and novel carbonaceous nanomaterials and revealing the micromechanisms have been carried out. The approaches used were those of the thermodynamics of reversible and irreversible processes for analysis of the adsorption, absorption, diffusion, TPD and other experimental data and comparing the analytical results with first-principle calculations. Such analysis of a number of the known experimental and theoretical data has shown a real possibility of the multilayer specific adsorption (intercalation) of hydrogen between graphene layers in novel carbonaceous nanomaterials, relevance for solving the bottle-neck problem of the hydrogen on-board storage in fuel-cell-powered vehicles, and other technical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-44

Citation:

Online since:

December 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.F. Service, Science 305 (2004) 958.

Google Scholar

[2] T.N. Veziroglu, Chem. Ind. 53 (1999) 383.

Google Scholar

[3] Committee on Alternatives and Strategies for Future Hydrogen Production and Use, Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, National Academy Press, Washington (2004).

DOI: 10.2172/882095

Google Scholar

[4] S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, Catal. Today 120 (2007) 246-257.

Google Scholar

[5] U.S. Department of Energy, Website, www. eere. energy. gov/hydrogenandfuelcells/ recent_awards. html#grand (2005).

Google Scholar

[6] A.C. Dillon, M.J. Heben, Appl. Phys. A 72 (2001) 133-142.

Google Scholar

[7] A.J. Maeland, Int. Sci. J. Altern. Energy Ecology (1) (2002) 19-29.

Google Scholar

[8] M. Hircher, M. Becher, JNN 3 (2003) 3-17.

Google Scholar

[9] A.V. Eletskii, Phycics-Uspekhi 174 (2004) 1191-1231.

Google Scholar

[10] Yu.S. Nechaev, O.K. Alekseeva, Russ. Chem. Rev. 73 (2004) 1211-1238.

Google Scholar

[11] C. Liu, H. -M. Cheng, J. Phys. D: Appl. Phys. 38 (2005) R231-R252.

Google Scholar

[12] C. Park, P.E. Anderson, A. Chambers, C.D. Tan, R. Hidalgo, N.M. Rodriguez, J. Phys. Chem. B 103 (1999) 10572-10581.

Google Scholar

[13] A.D. Lueking, R.T. Yang, N.M. Rodriguez, R.T.K. Baker, Langmuir 20 (2004) 714-721.

Google Scholar

[14] S. Orimo, A. Züttel, L. Schlapbach, J. Majer, T. Fukunaga, H. Fujii, J. Alloys Compounds 356-357 (2003) 716-719.

DOI: 10.1016/s0925-8388(03)00175-0

Google Scholar

[15] B.P. Tarasov. Int. Sci. J. Altern. Energy Ecology, Special issue (2003) 38-45.

Google Scholar

[16] G.G. Tibbetts, G.P. Meisner, C.H. Olk, Carbon 39 (2001) 2291-2301.

Google Scholar

[17] A. Chambers, C. Park, R.T.K. Baker, N.M. Rodriguez, J. Phys. Chem. B 102 (1998) 42534256.

Google Scholar

[18] Yu.S. Nechaev, Physics-Uspekhi 49 (2006) 563-591.

Google Scholar

[19] Yu.S. Nechaev, O.K. Alexeeva, A. Oechsner, JNN 9 (2009) 3949-3958.

Google Scholar

[20] Yu.S. Nechaev, On the physics of the hydrogen multilayer intercalation with carbonaceous nanostructures. In: Extended Abstracts of The Annual World Conference on Carbon, June 1419, Biarritz, France (2009).

Google Scholar

[21] R. Ströbel, J. Garche, P.T. Moseley, L. Jörissen, G. Wolf, J. Power Sc. 159 (2006) 781-801.

DOI: 10.1016/j.jpowsour.2006.03.047

Google Scholar

[22] M. Jordá-Beneyto, F. Suárez-García, D. Lozano-Castelló, D. Cazorla-Amorós, A. LinaresSolano, Carbon 45 (2007) 293-303.

DOI: 10.1016/j.carbon.2006.09.022

Google Scholar

[23] M. Hentsche, H. Hermann, D. Lindackers, G. Seifert, Int. J. Hydrogen Energy 32 (2007) 1530-1536.

DOI: 10.1016/j.ijhydene.2006.10.031

Google Scholar

[24] S. Rather, R. Zaharia, S.W. Hwang, M. Naik, K.S. Nahm, Chem. Phys. Lett. 441 (2007) 261267.

Google Scholar

[25] C.I. Contescu, C.M. Brown, Y. Liu, V.V. Bhat, N.C. Gallego, J. Phys. Chem. C 113 92009) 5886-5890.

Google Scholar

[26] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386 (1997) 377-379.

DOI: 10.1038/386377a0

Google Scholar

[27] A.C. Dillon, P.A. Parilla, T. Gennett, K.E.H. Gilbert, J.L. Alleman, J.L. Blackburn, Y. -H. Kim, Y. Zhao, S.B. Zhang, K.M. Jones, M.J. Heben, Hydrogen storage using carbon-based materisls. In: Intern. Conf. American Carbon Society ``Carbon-2004', Providence, USA, July 11-16, (2004).

DOI: 10.1149/ma2006-01/24/879

Google Scholar

[28] A.D. Lueking, R.T. Yang, Appl. Catal. A 265 (2004) 259-268.

Google Scholar

[29] A. Züttel, P. Sudan, Ph. Mauron, T. Kiyobayashi, Ch. Emmenegger, L. Schlapbach, Int. J. Hydrogen Energy 27 (2002) 203-212.

DOI: 10.1016/s0360-3199(01)00108-2

Google Scholar

[30] A. Züttel, P. Sudan, P. Mauron, P. Wenger, Appl. Phys. A 78 (2004) 941-946.

DOI: 10.1007/s00339-003-2412-1

Google Scholar

[31] K. Murata, K. Kaneko, H. Kanoh, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, S. Iijima, J. Phys. Chem. B 106 (2002) 11132-11138.

DOI: 10.1021/jp020583u

Google Scholar

[32] K.A. Williams, P.C. Eklund, Chem. Phys. Lett. 320 (2000) 352-358.

Google Scholar

[33] G. Stan, M.W. Cole, J. Low Temp. Phys. 110 (1998) 539-543.

Google Scholar

[34] E.V. Blagov, G.L. Klimchitskaya, V.M. Mostepanenko, Phys. Rev. B 71 (2005) 235401-1 - 235401-12.

Google Scholar

[35] S.S. Han, H.M. Lee, Carbon 42 (2004) 2169-2177.

Google Scholar

[36] F.H. Yang, R.T. Yang, Carbon 40 (2002) 437-444.

Google Scholar

[37] M. Volpe, F. Cleri, Surface Sci. 544 (2003) 24-34.

Google Scholar

[38] D. Stojkovic, P. Zhang, P.E. Lammert, V.H. Crespi, Phys. Rev. B 68 (2003) 1954061 - 195406-5.

Google Scholar

[39] Vl.A. Margulis, E.E. Muryumin, O.B. Tomilin, Physica B 353 (2004) 314-323.

Google Scholar

[40] H. Rafii-Tabar, Phys. Rep. 390 (2004) 235-452.

Google Scholar

[41] K. Ichimura, K. Imaeda, C. Jin, H. Inokuchi, Physica B 323 (2002) 137-139.

Google Scholar

[42] G.U. Sumanasekera, C.K.W. Adu, B.K. Pradhan, G. chen, H.E. Romero, P.C. Eklund, Phys. Rev. B 65 (2001) 035408-1 - 035408-5.

Google Scholar

[43] Yu.S. Nechaev, A. Oechsner, JNN 10, (2010) 3949-3965.

Google Scholar

[44] Yu.S. Nechaev, A. Oeschner, Def. Diffus. Forum 289-292 (2009) 679-686.

Google Scholar

[45] Yu.S. Nechaev, Solid State Phenomena 138 (2008) 91-118.

Google Scholar

[46] Yu.S. Nechaev, Physics-Uspekhi 51 (2008) 681-697.

Google Scholar

[47] Yu.S. Nechaev, Def. Diffus. Forum 251-252 (2006) 111-122.

Google Scholar

[48] Yu.S. Nechaev, A possibility of a phase fluctuation-like effect in HTSC cuprates. In: New Challenges in Superconductivity: Experimental Advances and Emerging Theories (NATO Science Series, Ser. II, Vol. 183, Eds J Ashkenazi et al. ) Dordrecht: Springer (2005).

DOI: 10.1007/1-4020-3085-1_16

Google Scholar

[49] Yu.S. Nechaev, Def. Diffus. Forum 194-199 (2001) 1713-1718.

Google Scholar

[50] L.A. Andreev, Yu.S. Nechaev, E.A. Kalashnikova, N.T. Konovalov, V.A. Lykhin, Yu.A. Minaev, N.A. Olshevskii, Phys. Status Solidi B 163 (1991) 221-229.

DOI: 10.1002/pssb.2221630122

Google Scholar

[51] H. Atsumi, S. Tokura, M. Miyake, J. Nucl. Mater. 155-157 (1988) 241-245.

Google Scholar

[52] E.A. Denisov, T.N. Kompaniets, I.V. Makarenko, Z. Vakar, A.N. Titkov, Mater. Sci. 2 (2002) 45-51.

Google Scholar

[53] H. Atsumi, K. Tauchi, J. Alloys Compounds 356-357 (2003) 705-709.

Google Scholar

[54] K. Shindo, T. Kondo, Y. Sakurai, J. Alloys Compounds 372 (2004) 201-207.

Google Scholar

[55] S. Isobe, T. Ichikawa, J.I. Gottwald, E. Gomibuchi, H. Fujii, J. Phys. Chem. Solids 65 (2004) 535-539.

Google Scholar

[56] K. Shindo, T. Kondo, Y. Sakurai, J. Alloys Compounds 397 (2005) 216.

Google Scholar

[57] C.W. Bauschlicher (Jr. ), C.R. So, Nano Lett. 2 (2002) 337-341.

Google Scholar

[58] A.I. Efimov, L.P. Belorukova, I.V. Vasilkova, V.P. Chechev, Handbook of Properties of Inorganic Compounds (Ed. Rabinovich V.A. ), Khimiya, Leningrad, (1983).

Google Scholar

[59] S.M. Pimenova, S.V. Melkhanova, V.P. Kolesov, J. Phys. Chem. B 106 (2002) 2127-2130.

Google Scholar

[60] R.A. Causey, J. Nucl. Mater. 162-164 (1989) 151-161.

Google Scholar

[61] M. Hirscher, M. Becher, M. Galuska, A. Quintel, V. Skakalova, Y. -M. Choi, U. DettlaffWeglikowska, S. Roth, I. Stepanek, P. Bernier, A. Leonhardt, J. Fink, J. Alloys Compounds 330-332 (2002) 654-658.

DOI: 10.1016/s0925-8388(01)01643-7

Google Scholar

[62] H. Lee H, Y. -S. Kang, S. -H. Kim, J. -Y. Lee, Appl. Phys. Lett. 80 (2002) 577-579.

Google Scholar

[63] M. Shiraishi, T. Takenobu, M. Ata, Chem. Phys. Lett. 367 (2003) 633-636.

Google Scholar

[64] M.K. Haas, J.M. Zielinski, G. Dantsin, C.G. Coe, G.P. Pez, A.C. Cooper, J. Mater. Res. 20 (2005) 3214-3223.

DOI: 10.1557/jmr.2005.0398

Google Scholar

[65] G. Majer, U. Eberle, F. Kimmerle, E. Stanik, S. Orimo, Physica B 328 (2003) 81-89.

DOI: 10.1016/s0921-4526(02)01815-x

Google Scholar

[66] A. Shimizu, H. Tachikawa, J. Phys. Chem. Solids 64 (2003) 419-423.

Google Scholar

[67] A.I. Skoulidas, D.M. Ackerman, J.K. Johnson, D.S. Sholl, Phys. Rev. Lett. 89 (2002) 1859011 - 18591-4.

Google Scholar

[68] A.A. Zhukhovitskii, L.A. Shvartsman, Physical Chemistry, 4th ed., Metallurgiya, Moscow, (1987).

Google Scholar

[69] A.J. Du, S.C. Smith, Nanotechnology 16 (2005) 2118-2123.

Google Scholar

[70] P. Sudan, A. Züttel, Ph. Mauron, Ch. Emmenegger, P. Wenger, L. Schlapbach, Carbon 41 (2003) 2377-2383.

DOI: 10.1016/s0008-6223(03)00290-2

Google Scholar

[71] P.G. Shewmon, Diffusion in Solids, Second ed., Minerals, Metals & Materials Soc., Warrendale, Pa, (1989).

Google Scholar

[72] N. Nishimiya, K. Ishigaki, H. Takikawa, M. Ikeda, Y. Hibi, T. Sakakibara, A. Matsumoto, K. Rsutsumi, J. Alloys Compounds 339 (2002) 275-282.

DOI: 10.1016/s0925-8388(01)02007-2

Google Scholar

[73] N.C. Gallego, T.D. Burchell, A.M. Clark, Carbon materials for hydrogen storage. In: Intern. Conf. American Carbon Society ``Carbon 2004', Providence, USA, July 11-16, (2004).

Google Scholar

[74] J. Lawrence, G. Xu, Appl. Phys. Lett. 84 (2004) 918-920.

Google Scholar

[75] L. Zhou, Y. Zhou, Y. Sun, Int. J. Hydrogen Energy 29 (2004) 475-479.

Google Scholar

[76] M. Bienfait, P. Zeppenfeld, N. Dupont-Pavlovsky, M. Muris, M.R. Johnson, T. Wilson, M. DePies, O.E. Vilches, Phys. Rev. B 70 (2004) 035410-1 - 035410-10.

DOI: 10.1103/physrevb.70.035410

Google Scholar

[77] Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Appl. Phys. Lett. 74 (1999) 2307-2309.

DOI: 10.1063/1.123833

Google Scholar

[78] C.M. Brown, T. Yildirim, D.A. Neumann, M.J. Heben, T. Gennett, A.C. Dillon, J.L. Alleman, J.E. Fischer, Chem. Phys. Lett. 329 (2000) 311-316.

DOI: 10.1016/s0009-2614(00)01003-4

Google Scholar

[79] J.A. Alonso et al., IEEE Trans. Nanotechnol. 3 (2004) 304.

Google Scholar

[80] Yu.V. Basova Yu V, D.D. Edie D, The influence of pitch chemistry on particle size and distribution in metal-containing activated carbon fibers. In: Intern. Conf. American Carbon Society ``Carbon 2004', Providence, USA, July 11-16, (2004).

DOI: 10.1016/j.carbon.2004.05.023

Google Scholar

[81] L. Zhou, Y. Zhou, Y. Sun, Int. J. Hydrogen Energy 31 (2006) 259-264.

Google Scholar

[82] X.B. Zhao, B. Xiao, A.J. Fletcher, K.M. Thomas, J. Phys. Chem. B 109 (2005) 8880-8888.

Google Scholar

[83] S.S. Han, J.K. Kang, H.M. Lee, Appl. Phys. Lett. 86 (2005) 203108-1 - 203108-9.

Google Scholar

[84] B. Panella, M. Hirscher, S. Roth, Carbon 43 (2005) 2209-2214.

Google Scholar

[85] B.K. Pradhan, G.U. Sumanasekera, K.W. Adu, H.E. Romero, K.A. Williams, P.C. Eklund, Physica B 323 (2002) 115-121.

Google Scholar

[86] K.A. Williams, B.K. Pradhan, P.C. Eklund, M.K. Kostov, M.W. Kole, Phys. Rev. Lett. 88 (2002) 165502-1 - 165502-4.

Google Scholar

[87] B.K. Pradhan, A.R. Harutyunyan, D. Stojkovic, J. Mater. Res. 17 (2002) 2209-2216.

Google Scholar

[88] A. Centrone, L . Brambilla, G. Zerbi, Phys. Rev. B 71 (2005) 245406-1 - 245406-7.

Google Scholar

[89] N. Ogita, K. Yamamoto, C. Hayashi, T. Matsushima, S. Orimo, T. Ichikawa, H. Fujii, M. Udagawa, J. Phys. Soc. Jpn. 73 (2004) 553-555.

DOI: 10.1143/jpsj.73.553

Google Scholar

[90] C. Lenardi, M. Marino, E. Barborini, P. Piseri, P. Milani, Eur. Phys. J. B 46 (2005) 441-447.

DOI: 10.1140/epjb/e2005-00268-2

Google Scholar

[91] J. Li et al., J. Chem. Phys. 119 (2003) 2376.

Google Scholar

[92] S. Letardi et al., Surf. Sci. 496 (2002) 33.

Google Scholar

[93] G. Chen, X.G. Gong, C.T. Chan, Phys. Rev. B 72 (2005) 045444-1 - 045444-6.

Google Scholar

[94] I.O. Bashkin, V.E. Antonov, A.V. Bazhenov, I.K. Bdikin, D.N. Borisenko, E.P. Krinichnaya, A.P. Moravsky, A.I. Kharkunov, Yu.M. Shul"ga, Yu.A. Ossipyan, E.G. Ponyatovsky, JETP Lett. 79 (2004) 226-236.

DOI: 10.1134/1.1753421

Google Scholar

[95] Yu.M. Shulga, I.O. Bashkin, A.V. Krestinin, V.M. Martinenko, G.I. Zvereva, I.V. Kondrateva, Yu.A. Ossipyan, E.G. Ponyatovsky, JETP Lett. 80 (2004) 752-756.

Google Scholar

[96] T. Fukunaga T, K. Itoh, S. Orimo, M. Aoki, H. Fujii, J. Alloys Compounds 327 (2001) 224229.

Google Scholar

[97] Yu.S. Nechaev, O.K. Alexeeva, Int. J. Hydrogen Energy 28 (2003) 1433-1443.

Google Scholar

[98] W. Möller, J. Nucl. Mater. 162-164 (1989) 138-150.

Google Scholar

[99] I.L. Tazhibaeva, A. Kh. Klepikov, V.P. Shestakov, O.G. Romanenko, E.V. Chikhray, E.A. Kenzhin, Yu.S. Cherepnin, L.N. Tikhomirov, V.A. Zverev, J. Nucl. Mater. 233-237 (1996).

DOI: 10.1016/s0022-3115(96)00069-4

Google Scholar