Dispersion of SiW12 Nanoparticles on Highly Oxidized Multiwalled Carbon Nanotubes and their Electrocatalytic Behavior

Abstract:

Article Preview

Nanocomposite hybrid materials (NHM) based on the immobilization and dispersion of SiW12 polyanion (H4SiW12O40) on a highly oxidized multiwalled carbon nanobue matrix (NTS) are presented. The synthesis procedure followed is designed in order to increase the SiW12 particles concentration on the NHM. XRD, FTIR, N2 adsorption isotherms, EDS, SEM, TEM, and cyclic voltammetry confirmed the presence of SiW12 nanoparticles, whose microstructure and dispersion characteristics were correlated with their BET surface area and their electrochemical behavior. Based on these studies, SiW12 nanoparticles are successfully nanodispersed in the highly oxidized carbon nanotube matrix (NTS), obtaining the highest SiW12 concentration and best electrochemical behavior for sample MH3. The electrocatalytic properties are evaluated for this optimized hybrid (MH3) in the electroreduction of bromated ion with good results.

Info:

Periodical:

Edited by:

Sergio Mejía

Pages:

11-18

DOI:

10.4028/www.scientific.net/JNanoR.14.11

Citation:

A. K. Cuentas-Gallegos et al., "Dispersion of SiW12 Nanoparticles on Highly Oxidized Multiwalled Carbon Nanotubes and their Electrocatalytic Behavior", Journal of Nano Research, Vol. 14, pp. 11-18, 2011

Online since:

April 2011

Export:

Price:

$35.00

[1] D.E. Katsoulis, Chem. Rev. 98 (1998) 359-387.

[2] C. Debiemme-Chouvy, H. Cachet, G. Folcher, C. Deslouis, Electroanal. 19 (2007) 259-262.

DOI: 10.1002/elan.200603719

[3] M. Zhou, L. Guo, F. Lin, H. Liu, Anal. Chim. Act. 587 (2007) 124-131.

[4] S. Zhai, S. Gong, J. Jiang, S. Dong, J. Li, Anal. Chim. Act. 486 (2003) 85-92.

[5] B. Wang, L. Cheng, S. Dong, J. Electroanal. Chem. 516 (2001) 17-22.

[6] D. Pan, J. Chen, W. Tao, L. Nie, S. Yao, J. Electroanal. Chem. 579 (2005) 77-82.

[7] K. Karnicka, M. Chojak, K. Miecznikowski, M. Skunik, B. Baranowska, A. Kolary, A. Piranska, B. Palys, L. Adamczyk, P.J. Kulesza, Bioelectrochem. 66 (2005) 79-87.

DOI: 10.1016/j.bioelechem.2004.06.005

[8] L. Cheng, J. Liu, S. Dong, Anal. Chim. Acta 417 (2000) 133-142.

[9] J. Qu, X. Zou, B. Liu, S. Dong, Anal. Chim. Acta 599 (2007) 51-57.

[10] Z. Li, J. Chen, D. Pan, W. Tao, L. Nie, S. Yao, Electrochim. Acta 51 (2006) 4255-4261.

[11] M. Barth, M. Lapkowski, S. Lefrant, Electrochim. Act. 44 (1999) 2117-2123.

[12] A. Balamurugan, S. -M. Chen, Electroanal. 19 (2007) 1616-1622.

[13] M. Skunik, P.J. Kulesza, Anal. Chim. Acta 631 (2009) 153-160.

[14] B. Wang, S. Dong, Electrochim. Acta 41 (1996) 895-902.

[15] H. Hamidi, E. Shams, B. Yadollahi, F.K. Esfahani, Talanta 74 (2008) 909-914.

[16] X. Wang, H. Zhang, E. Wang, Z. Han, C. Hu, Mater. Lett. 58 (2004) 1661-1664.

[17] Y. Li, W. Bu, L. Wu, C. Sun, Sensors & Actuators B 107 (2005) 921-928.

[18] N. Mizuno, M. Misono, Chem. Rev. 98 (1998) 199-217.

[19] Y. Izumi, K. Urabe, Chem. Lett. (1981) 663-666.

[20] J. Alcañiz-Monge, G. Trautwein, S. Parres-Esclapez, J.A. Maciá-Agulló, Microp. Mesop. Mater. 115 (2008) 440-446.

DOI: 10.1016/j.micromeso.2008.02.017

[21] R. D. Gall, C.L. Hill, J.E. Walker, Chem. Mater. 8 (1996) 2523-2527.

[22] S.R. Mukai, T. Sugiyama, H. Tamon, Appl. Catal. A, 256 (2003) 99-105.

[23] D. Martel, M. Gross, J. Solid State Electrochem. 11 (2007) 421-429.

[24] H. Liu, P. He, Z. Li, C. Sun, L. Shi, Y. Liu, G. Zhu, J. Li, Electrochem. Comm., 7 (2005) 1357-1363.

[25] X. Wang, E. Wang, Y. Lan, C. Hu, Electroanal. 14 (2002) 1116-1120.

[26] A.K. Cuentas-Gallegos, M. Gonzales-Toledo, M.E. Rincón, Rev. Mex. Fis. S 53 (2007) 91-95.

[27] Y. Song, E. Wang, Z. Kang, Y. Lan, C. Tian, Mater. Res. Bull. 42 (2007) 1485-1491.

[28] B. Fei, H. Lu, Z. Hu, J.H. Xin, Nanotech. 17 (2006) 1589-1593.

[29] Z. Kang, Y. Wang, E. Wang, S. Lian, L. Gao, W. You, C. Hu, L. Xu, Solid State Comm. 129 (2004) 559-564.

[30] M. Skunik, M. Chojak, P.J. Kulesza, Electrochim. Acta 53 (2008) 3862-3869.

[31] D. Pan, J. Chen, W. Tao, L. Nie, S. Yao, Langmuir 22 (2006) 5872-5876.

[32] A.K. Cuentas-Gallegos, M. Miranda-Hernández, A. Vargas-Ocampo, Electrochim. Acta 54 (2009) 4378-4383.

[33] A.K. Cuentas-Gallegos, S. Jiménez-Peñaloza, D.A. Baeza-Rostro, A. Vargas-Ocampo, A. Germán-García: accepted in Journal of New Materials for Electrochemical Systems.

[34] A. Kuhn, N. Mano, C. Vidal, J. Electroanal. Chem. 462 (1999) 187-194.

[35] A.K. Cuentas-Gallegos, R. Martínez-Rosales, M. Baibarac, P. Gómez-Romero, M.E. Rincón, Electrochem. Comm. 9 (2007) 2088-(2092).

[36] P. Garrigue, M.H. Delville, C. Labrugere, E. Cloutet, P.J. Kulesza, J.P. Morand, A. Kuhn, Chem. Mater. 16 (2004) 2984-2986.

DOI: 10.1021/cm049685i

[37] A.K. Cuentas-Gallegos, R. Martínez-Rosales, M.E. Rincón, G.A. Hirata, G. Orozco, Opt. Mater. 29 (2006) 126-133.

[38] L. Cheng, S. Dong, J. Electroanal. Chem. 481 (2000) 168-176.

[39] M. Hasik, A. Pron, J. Kulszewicz-Bajer, J. Pozniczek, A. Bielanski, Z. Piwowarska, R. Dziembaj, Syntheric Metals 55-57 (1993) 972-976.

DOI: 10.1016/0379-6779(93)90184-x

[40] V. Khomenko, E. Raymundo-Piñero, F. Béguin, J. Power Sources 195 (2010) 4234-4241.

DOI: 10.1016/j.jpowsour.2010.01.006

[41] H.A. Andreas, B.E. Conway, Electrochim. Acta 51 (2006) 6510-6520.

[42] M.A. Montes Moran, D. Suarez, J.A. Mendez, E. Fuente, Carbon, 42 (2004) 1219-1225.

[43] M. Sadakane, E. Steckhan, Chem. Rev. 98 (1998) 219-237.

[44] P. Gómez-Romero, N. Casañ-Pastor, J. Phys. Chem. 100 (1996) 12448-12454.

[45] CRC Handbook of Chemistry and Physics, editor in Chief David R. Lide, 86th edition 2005-2006, Taylor & Francis Group, Boca Raton, FL (2005), pp.8-25.

DOI: 10.1021/ja059868l

[46] I.G. Casella, M. Contursi, Electrochim. Acta 50 (2005) 4146-4154.

In order to see related information, you need to Login.