One-Pot Synthesis of Coral-Shaped Gold Nanostructures for Surface-Enhanced Raman Scattering

Article Preview

Abstract:

In this work, a chelating agent, ethylenediaminetetraacetic acid (EDTA) was used for the controllable synthesis of gold nanostructures in aqueous solution. Coral-shaped Au nanostructures were synthesized by reducing HAuCl4 with EDTA. EDTA serves not only as a reducing agent but also as a particle capping agent in the formation of coral-shaped Au nanostructures. It is found that the molar ratio of HAuCl4:EDTA and reacted temperature play significant effects on the formation and growth of these novel nanostructures. These Au nanostructures could serve as highly sensitive and reproductive surface-enhanced Raman scattering (SERS) substrates for chemical and biological detection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-55

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293-346.

DOI: 10.1021/cr030698+

Google Scholar

[2] C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith, S.C. Baxter, Gold nanoparticles in biology: beyond toxicity to cellular imaging, Acc. Chem. Res. 41 (2008) 1721-1730.

DOI: 10.1021/ar800035u

Google Scholar

[3] B.R. Cuenya, Synthesis and catalytic properties of metal nanoparticles: size, shape, s upport, composition, and oxidation state effects, Thin Solid Films 518 (2010) 3127-3150.

DOI: 10.1016/j.tsf.2010.01.018

Google Scholar

[4] N.L. Rosi, C.A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev. 105 (2005) 1547-1562.

DOI: 10.1021/cr030067f

Google Scholar

[5] M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors, Chem. Rev. 108 (2008) 494-521.

DOI: 10.1021/cr068126n

Google Scholar

[6] J.Z. Zhang, C. Noguez, Plasmonic optical properties and applications of metal nanostructures, Plasmonics 3 (2008) 127-150.

DOI: 10.1007/s11468-008-9066-y

Google Scholar

[7] P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res. 41 (2008) 1578-1586.

DOI: 10.1021/ar7002804

Google Scholar

[8] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025-1102.

DOI: 10.1021/cr030063a

Google Scholar

[9] T.K. Sau, A.L. Rogach, Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control, Adv. Mater. 22 (2010) 1781-1804.

DOI: 10.1002/adma.200901271

Google Scholar

[10] T.K. Sau, A.L. Rogach, F. Jäckel, T.A. Klar, J. Feldmann, Properties and applications of colloidal nonspherical noble metal nanoparticles, Adv. Mater. 22 (2010) 1805-1825.

DOI: 10.1002/adma.200902557

Google Scholar

[11] E. Hao, G.C. Schatz, J.T. Hupp, Synthesis and optical properties of anisotropic metal nanoparticles, J. Fluoresc. 14 (2004) 331-341.

DOI: 10.1023/b:jofl.0000031815.71450.74

Google Scholar

[12] Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics, Angew. Chem. Int. Ed. 48 (2009) 60-103.

DOI: 10.1002/anie.200802248

Google Scholar

[13] S.K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications, Chem. Rev. 107 (2007) 4797-4862.

DOI: 10.1021/cr0680282

Google Scholar

[14] C. Chen, L. Wang, G. Jiang, H. Yu, Chemical preparations of special-shaped metal nanomaterials through encapsulation or inducement in soft solution, Rev. Adv. Mater. Sci. 11 (2006) 1-18.

Google Scholar

[15] L.A. Dykman, V.A. Bogatyrev, Gold nanoparticles: preparation, functionalization and applications in biochemistry and immunochemistry, Russ. Chem. Rev. 76 (2007) 181-194.

DOI: 10.1070/rc2007v076n02abeh003673

Google Scholar

[16] M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, Shape control in gold nanoparticle synthesis, Chem. Soc. Rev. 37 (2008) 1783-1791.

DOI: 10.1039/b711490g

Google Scholar

[17] T. Qiu, W. Zhang, P.K. Chu, Recent progress in fabrication of anisotropic nanostructures for surface-enhanced Raman spectroscopy, Recent Pat. Nanotechnol. 3 (2009) 10-20.

DOI: 10.2174/187221009787003357

Google Scholar

[18] N.R. Jana, L. Gearheart, C.J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun. (2001) 617-618.

DOI: 10.1039/b100521i

Google Scholar

[19] K.K. Caswell, C.M. Bender, C.J. Murphy, Seedless, surfactantless wet chemical synthesis of silver nanowires, Nano Lett. 3 (2003) 667-669.

DOI: 10.1021/nl0341178

Google Scholar

[20] X. Sun, S. Dong, E. Wang, Large-scale synthesis of micrometerscale single-crystalline Au plates of nanometer thickness by a wet-chemical route, Angew. Chem., Int. Ed. 43 (2004) 6360-6363.

DOI: 10.1002/anie.200461013

Google Scholar

[21] N. Zhao, Y. Wei, N. Sun, Q. Chen, J. Bai, L. Zhou, Y. Qin, M. Li, L. Qi, Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions, Langmuir 24 (2008) 991-998.

DOI: 10.1021/la702848x

Google Scholar

[22] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Nanoengineering of optical resonances, Chem. Phys. Lett. 288 (1998) 243-247.

DOI: 10.1016/s0009-2614(98)00277-2

Google Scholar

[23] S. Chen, Z.L. Wang, J. Ballato, S.H. Foulger, D.L. Carroll, Monopod, bipod, tripod, and tetrapod gold nanocrystals, J. Am. Chem. Soc. 125 (2003) 16186-16187.

DOI: 10.1021/ja038927x

Google Scholar

[24] D.C. Harris, Quantitative Chemical Analysis, 7th ed., W.H. Freeman and Company, New York, (2007).

Google Scholar

[25] A. Fabrikanos, S. Athanassiou, K.H. Lieser, Preparation of stable hydrosols of gold and silver by reduction with ethylenediaminetetraacetic acid, Z. Naturforsch. 18b (1963) 612-617.

Google Scholar

[26] J. Zhu, Q. Qiu, H. Wang, J. Zhang, J. Zhu, Z. Chen, Synthesis of silver nanowires by a sonoelectrochemical method, Inorg. Chem. Commun. 5 (2002) 242-244.

DOI: 10.1016/s1387-7003(02)00351-9

Google Scholar

[27] E. Hutter, J.H. Fendler, Size quantized formation and self-assembly of gold encased silver nanoparticles, Chem. Commun. (2002) 378-379.

DOI: 10.1039/b108163b

Google Scholar

[28] R. Guo, L. Zhang, Z. Zhu, X. Jiang, Direct facile approach to the fabrication of chitosan-gold hybrid nanospheres, Langmuir 24 (2008) 3459-3464.

DOI: 10.1021/la703080j

Google Scholar

[29] H. Liang, Z. Li, W. Wang, Y. Wu, H. Xu, Highly surface-roughened flower-like, silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering, Adv. Mater. 21 (2009) 4614-4618.

DOI: 10.1002/adma.200901139

Google Scholar

[30] A.R. Tao, S. Habas, P. Yang, Shape control of colloidal metal nanocrystals, Small, 4 (2008) 310-325.

DOI: 10.1002/smll.200701295

Google Scholar

[31] A. Mayoral, H. Barron, R. Estrada-Salas, A. Vazquez-Duran, M. José-Yacamán, Nanoparticle stability from the nano to the meso interval, Nanoscale 2 (2010) 335-342.

DOI: 10.1039/b9nr00287a

Google Scholar

[32] A.S. Sarac, Redox polymerization, Prog. Polym. Sci. 24 (1999) 1149-1204.

Google Scholar

[33] V. K LaMer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc. 72 (1950) 4847-4854.

DOI: 10.1021/ja01167a001

Google Scholar

[34] D. Wang, Y. Liu, X. Zhou, J. Sun, T. You, EDTA-controlled one-pot preparation of novel shaped gold microcrystals and their application in surface-enhanced Raman scattering, Chem. Lett. 36 (2007) 924-925.

DOI: 10.1246/cl.2007.924

Google Scholar

[35] R. Patakfalvi, S. Papp, I. Dekany, The kinetics of homogeneous nucleation of silver nanoparticles stabilized by polymers, J. of Nanopart. Res. 9 (2007) 353-364.

DOI: 10.1007/s11051-006-9139-9

Google Scholar

[36] P. Hildebrandt, M. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver, J. Phys. Chem. 88 (1984) 5935-5944.

DOI: 10.1021/j150668a038

Google Scholar