[1]
H. He, C.S. Lao, L.J. Chen, D. Davidovic, Z.L. Wang, Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties J. Am. Chem. Soc. 127 (2005) 16376-16377.
DOI: 10.1021/ja0559193
Google Scholar
[2]
E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang, able and high-sensitive gas sensors based on semoconducting oxide nanobelts Appl. Phys. Lett. 81 (2002) 1869-1871.
DOI: 10.1063/1.1504867
Google Scholar
[3]
H. He, C.L. Hsin, J. Liu, L.J. Chen, Z.L. Wang, Piezoelectric Gated Diode of a Single ZnO Nanowire. Adv. Mater. 19 (2007) 781-784.
DOI: 10.1002/adma.200601908
Google Scholar
[4]
Z.L. Wang, X.Y. Kong, J.M. Zuo, Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 91 (2003) 185502.
DOI: 10.1103/physrevlett.91.185502
Google Scholar
[5]
J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO Nanostructures. Nano Lett. 2 (2002) 1287-1291.
DOI: 10.1021/nl025753t
Google Scholar
[6]
X.Y. Kong, Z.L. Wang, Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3 (2003) 1625-1631.
DOI: 10.1021/nl034463p
Google Scholar
[7]
Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291 (2001) 1947-(1949).
Google Scholar
[8]
Rensmo H. , Keis K., Lindstrom H., Sodergren S., Solbrand A., Hagfeldt A., Lindquist S. E., Wang L. N., Muhammed M., High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes J. Phys. Chem. B, 101 (1997).
DOI: 10.1021/jp962918b
Google Scholar
[9]
Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P., Room-Temperature Ultraviolet Nanowire Nanolasers Science 292 (2001) 1897-1899.
DOI: 10.1126/science.1060367
Google Scholar
[10]
Johnson J., Yan H., Schaller R., Haber L., Saykally R., Yang P., Single Nanowire Lasers. J. Phys. Chem. B, 105 (2001) 11387-11390.
DOI: 10.1021/jp012304t
Google Scholar
[11]
P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. Choi, Controlled Growthof ZnO nanowires and their optical properties. Adv. Funct. Mater. 12 (2002) 323-331.
DOI: 10.1002/1616-3028(20020517)12:5<323::aid-adfm323>3.0.co;2-g
Google Scholar
[12]
B.D. Yao, Y.F. Chan, N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81 (2002) 757-759.
DOI: 10.1063/1.1495878
Google Scholar
[13]
W.I. Park, G. Yi, M. Kim, S.L. Pennycook, ZnO nanoneedles grown vertically on Si substrates by non-catalytic Vapor-Phase. Adv. Mater. 14 (2002) 1841-1843.
DOI: 10.1002/adma.200290015
Google Scholar
[14]
Y. Zhang, G. Du, X. Wang, W. Li, X. Yang, Y. Ma, B. Zhao, H. Yang, D. Liu, S. Yang, X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition J. Crystal Growth 252 (2003) 180-183.
DOI: 10.1016/s0022-0248(02)02481-8
Google Scholar
[15]
A. Szizybalski, F. Girgsdies, A. Rabis, Y. Wang, M. Niederberger, T. Ressler, In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol. J Catal. 233 (2005) 297.
DOI: 10.1016/j.jcat.2005.04.024
Google Scholar
[16]
W.I. Park, G.C. Yi, J.W. Kim, S.M. Park, Schottky nanocontacts on ZnO nanorod arrays. Appl. Phys. Lett. 82 (2003) 4358.
DOI: 10.1063/1.1584089
Google Scholar
[17]
L. Vayssieres, K. Keis, A. Hagfeldt, S. Lindquist, Three-dimensional array of highly oriented crystalline ZnO Microtubes. Chem. Mater. 13 (2001) 4395-4398.
DOI: 10.1021/cm011160s
Google Scholar
[18]
L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15 (2003) 464-466.
DOI: 10.1002/adma.200390108
Google Scholar
[19]
Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc. 124 (2002) 12954-11295.
DOI: 10.1021/ja0279545
Google Scholar
[20]
M. Yang, G. Pang, L. Jiang, S. Feng, Nanotechnology 17 (2006) 206.
Google Scholar
[21]
J.H. He, C.H. Ho, C.W. Wang, Y. Ding, L.J. Chen, Z.L. Wang, Growth of Crossed ZnO Nanorod Networks Induced by Polar Substrate Surface Crystal Growth & Design 9 (2009) 17-19.
DOI: 10.1021/cg800530n
Google Scholar
[22]
J.H. He, C.H. Ho, C.W. Wang, Y. Ding, L.J. Chen, Z.L. Wang, Cryst. Growth Des. 9 (2009) 17.
Google Scholar
[23]
R. Wahab, S.G. Ansari, H.K. Seo, G.S. Kim, E. -Y. Suh, H. -S. Shin, Solid state Sci. 11 (2009) 439.
Google Scholar
[24]
B. Reeja-Jayan, E. De La Rosa, S. Sepulveda-Guzman, R.A. Rodriguez, M.J. Yacaman, Structural Characterization and Luminescence of Porous Single Crystalline ZnO Nanodisks with Sponge-like Morphology. J. Phys. Chem. C 112 (2008) 240-246.
DOI: 10.1021/jp0765704
Google Scholar
[25]
W.K. Burton, N. Cabrera, F.C. Frank, Role of Dislocations in Crystal Growth. Nature 163 (1949) 398-399.
DOI: 10.1038/163398a0
Google Scholar
[26]
U. Ozgur, I.A. Ya, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98 (2005) 041301.
DOI: 10.1063/1.1992666
Google Scholar
[27]
J.D. Eshelby, Screw Dislocations in Thin Rods. J. Appl. Phys. 24 (1953) 176.
Google Scholar
[28]
M.J. Bierman, Y.K.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-Driven Nanowire Growth and Eshelby Twist. Science 320 (2008) 1060-1063.
DOI: 10.1126/science.1157131
Google Scholar
[29]
W. Lu, G. Liu, S. Gao, S. Xing, J. Wang, Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19 (2008) 445711 (pp.445711-445710).
DOI: 10.1088/0957-4484/19/44/445711
Google Scholar
[30]
E.P. Melían, O.G. Díaz, J.M.D. Rodríguez, G. Colón, J. Araña, J.H. Melián, J.A. Navío, J.P. Peña, ZnO activation by using activated carbon as a support: Characterisation and photoreactivity. Appl. Catal. A: Gen. 364 (2009) 174-181.
DOI: 10.1016/j.apcata.2009.05.042
Google Scholar
[31]
R. Pérez-Hernández, A. Gutiérrez-Martínez, A. Mayoral, F. Leonard-Deepak, M.E. Fernández-García, G. Mondragón-Galicia, M. Miki, M. Jose-Yacaman, Hydrogen Production by Steam Reforming of Methanol over a Ag/ZnO One Dimensional Catalyst. Advanced Materials Research 132 (2010).
DOI: 10.4028/www.scientific.net/amr.132.205
Google Scholar
[32]
T. Trinidade, J.D.P. DeJesus, P. O'Brien, Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution J. Mater. Chem. 4 (1994) 1611-1618.
DOI: 10.1039/jm9940401611
Google Scholar
[33]
R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, G.S. Kim, G. Khang, H. -S. Shin, Low temperature solution synthesis and characterization of ZnO nano-flowers Mater. Res. Bull. 42 (2007) 1640-1648.
DOI: 10.1016/j.materresbull.2006.11.035
Google Scholar
[34]
S. Shao, P. Jia, S. Liu, W. Bai, Stable field emission from rose-like zinc oxide nanostructures synthesized through a hydrothermal route Mater. Lett. 62 (2008 ) 1200-1203.
DOI: 10.1016/j.matlet.2007.08.049
Google Scholar
[35]
F. Li, L. Hu, Z. Li, X. Huang, Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB assisted hydrothermal method. J. Alloys Compd. 465 (2008) L14.
DOI: 10.1016/j.jallcom.2007.11.009
Google Scholar
[36]
S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10 (2009) 013001, pp.013001-013018.
DOI: 10.1088/1468-6996/10/1/013001
Google Scholar
[37]
R.A. McBride, J.M. Kelly, D.E. McCormack, Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts. J. Mater. Chem. 13 (2003) 1196-1201.
DOI: 10.1039/b211723c
Google Scholar
[38]
E. De La Rosa, S. Sepulveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo, M. Jose-Yacaman, Controlling the Growth and Luminescence Properties of Well-Faceted ZnO Nanorods. J. Phys. Chem. C 111 (2007) 8489-8495.
DOI: 10.1021/jp071846t
Google Scholar
[39]
B. Wen, Y. Huang, J.J. Boland, Controllable Growth of ZnO Nanostructures by a Simple Solvothermal Process. J. Phys. Chem. C 112 (2008) 106-111.
DOI: 10.1021/jp076789i
Google Scholar
[40]
S. Sepulveda-Guzman, B. Reeja-Jayan, E. de la Rosa, A. Torres-Castro, V. Gonzalez-Gonzalez, M. Jose-Yacaman, Synthesis of assembled ZnO structures by precipitation method in aqueous media Mater. Chem. Phys. 115 (2009) 172-178.
DOI: 10.1016/j.matchemphys.2008.11.030
Google Scholar
[41]
W.K. Burton, N. Cabrera, F.C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces. Philos. Trans. R. Soc. London A 243 (1951) 299-358.
Google Scholar
[42]
W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 203 (1999) 186-196.
DOI: 10.1016/s0022-0248(99)00076-7
Google Scholar
[43]
Z. Zhang, J. Mu, Hydrothermal synthesis of ZnO nanobundles controlled by PEO-PPO- PEO block copolymers J. Colloid Interface Sci. 307 (2007) 79-82.
DOI: 10.1016/j.jcis.2006.10.035
Google Scholar
[44]
E. Bauser, H. Strunk, J. Crystal Growth 51 (1981) 362.
Google Scholar
[45]
E. Bauser, H. Strunk, Analysis of dislocations creating monomolecular growth steps. J. Crystal Growth 51 (1981) 362-366.
DOI: 10.1016/0022-0248(81)90321-3
Google Scholar
[46]
N. Wang, Y. Cai, R.Q. Zhang, Growth of nanowires. Mater. Sci. Eng., R 60 (2008) 1-51.
Google Scholar
[47]
J. Zhan, Y. Bando, J. Hu, D. Golberg, Nanofabrication on ZnO nanowires. Applied Physics Letters 89 (2006) 243111-243113.
DOI: 10.1063/1.2404950
Google Scholar