Low-Temperature Synthesis and Growth Mechanism of ZnO Nanorods on Crystalline Si Substrate

Article Preview

Abstract:

Single crystalline zinc oxide (ZnO) nanorods have been grown on Si (100) substrates by a hydrothermal method at 65 °C. In order to show the habit of crystalline growth and applied these ZnO 1D to the electron radiation. The ZnO nanorods grown on Si (100) have been characterized in detail using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD studies revealed that the ZnO nanowires showed the wurtzite structure (hexagonal). The Secondary Electron SEM image showed different morphology of the ZnO nanorods as a function of the reagents concentration. These nanorods have uneven tops and showed an apparent screw growth pattern with a typical hexagonal facets structure on the (0001) surface. The spiral growth step morphology strongly suggests that screw dislocations can play a significant role in promoting the ZnO nanorods growth and that the screw dislocation is growing in the polar axis of the ZnO nanorods. The ZnO nanorods were irradiated with electron beam (30 kV) for 100 minutes. We observed that the one-dimensional (1-D) ZnO nanorods were resistant to the electron radiation. This finding is interesting because, we can use these 1-D ZnO nanorods to development materials which can be resistant to radiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-82

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. He, C.S. Lao, L.J. Chen, D. Davidovic, Z.L. Wang, Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties J. Am. Chem. Soc. 127 (2005) 16376-16377.

DOI: 10.1021/ja0559193

Google Scholar

[2] E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang, able and high-sensitive gas sensors based on semoconducting oxide nanobelts Appl. Phys. Lett. 81 (2002) 1869-1871.

DOI: 10.1063/1.1504867

Google Scholar

[3] H. He, C.L. Hsin, J. Liu, L.J. Chen, Z.L. Wang, Piezoelectric Gated Diode of a Single ZnO Nanowire. Adv. Mater. 19 (2007) 781-784.

DOI: 10.1002/adma.200601908

Google Scholar

[4] Z.L. Wang, X.Y. Kong, J.M. Zuo, Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 91 (2003) 185502.

DOI: 10.1103/physrevlett.91.185502

Google Scholar

[5] J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO Nanostructures. Nano Lett. 2 (2002) 1287-1291.

DOI: 10.1021/nl025753t

Google Scholar

[6] X.Y. Kong, Z.L. Wang, Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3 (2003) 1625-1631.

DOI: 10.1021/nl034463p

Google Scholar

[7] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291 (2001) 1947-(1949).

Google Scholar

[8] Rensmo H. , Keis K., Lindstrom H., Sodergren S., Solbrand A., Hagfeldt A., Lindquist S. E., Wang L. N., Muhammed M., High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes J. Phys. Chem. B, 101 (1997).

DOI: 10.1021/jp962918b

Google Scholar

[9] Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P., Room-Temperature Ultraviolet Nanowire Nanolasers Science 292 (2001) 1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[10] Johnson J., Yan H., Schaller R., Haber L., Saykally R., Yang P., Single Nanowire Lasers. J. Phys. Chem. B, 105 (2001) 11387-11390.

DOI: 10.1021/jp012304t

Google Scholar

[11] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. Choi, Controlled Growthof ZnO nanowires and their optical properties. Adv. Funct. Mater. 12 (2002) 323-331.

DOI: 10.1002/1616-3028(20020517)12:5<323::aid-adfm323>3.0.co;2-g

Google Scholar

[12] B.D. Yao, Y.F. Chan, N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81 (2002) 757-759.

DOI: 10.1063/1.1495878

Google Scholar

[13] W.I. Park, G. Yi, M. Kim, S.L. Pennycook, ZnO nanoneedles grown vertically on Si substrates by non-catalytic Vapor-Phase. Adv. Mater. 14 (2002) 1841-1843.

DOI: 10.1002/adma.200290015

Google Scholar

[14] Y. Zhang, G. Du, X. Wang, W. Li, X. Yang, Y. Ma, B. Zhao, H. Yang, D. Liu, S. Yang, X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition J. Crystal Growth 252 (2003) 180-183.

DOI: 10.1016/s0022-0248(02)02481-8

Google Scholar

[15] A. Szizybalski, F. Girgsdies, A. Rabis, Y. Wang, M. Niederberger, T. Ressler, In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol. J Catal. 233 (2005) 297.

DOI: 10.1016/j.jcat.2005.04.024

Google Scholar

[16] W.I. Park, G.C. Yi, J.W. Kim, S.M. Park, Schottky nanocontacts on ZnO nanorod arrays. Appl. Phys. Lett. 82 (2003) 4358.

DOI: 10.1063/1.1584089

Google Scholar

[17] L. Vayssieres, K. Keis, A. Hagfeldt, S. Lindquist, Three-dimensional array of highly oriented crystalline ZnO Microtubes. Chem. Mater. 13 (2001) 4395-4398.

DOI: 10.1021/cm011160s

Google Scholar

[18] L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15 (2003) 464-466.

DOI: 10.1002/adma.200390108

Google Scholar

[19] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc. 124 (2002) 12954-11295.

DOI: 10.1021/ja0279545

Google Scholar

[20] M. Yang, G. Pang, L. Jiang, S. Feng, Nanotechnology 17 (2006) 206.

Google Scholar

[21] J.H. He, C.H. Ho, C.W. Wang, Y. Ding, L.J. Chen, Z.L. Wang, Growth of Crossed ZnO Nanorod Networks Induced by Polar Substrate Surface Crystal Growth & Design 9 (2009) 17-19.

DOI: 10.1021/cg800530n

Google Scholar

[22] J.H. He, C.H. Ho, C.W. Wang, Y. Ding, L.J. Chen, Z.L. Wang, Cryst. Growth Des. 9 (2009) 17.

Google Scholar

[23] R. Wahab, S.G. Ansari, H.K. Seo, G.S. Kim, E. -Y. Suh, H. -S. Shin, Solid state Sci. 11 (2009) 439.

Google Scholar

[24] B. Reeja-Jayan, E. De La Rosa, S. Sepulveda-Guzman, R.A. Rodriguez, M.J. Yacaman, Structural Characterization and Luminescence of Porous Single Crystalline ZnO Nanodisks with Sponge-like Morphology. J. Phys. Chem. C 112 (2008) 240-246.

DOI: 10.1021/jp0765704

Google Scholar

[25] W.K. Burton, N. Cabrera, F.C. Frank, Role of Dislocations in Crystal Growth. Nature 163 (1949) 398-399.

DOI: 10.1038/163398a0

Google Scholar

[26] U. Ozgur, I.A. Ya, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98 (2005) 041301.

DOI: 10.1063/1.1992666

Google Scholar

[27] J.D. Eshelby, Screw Dislocations in Thin Rods. J. Appl. Phys. 24 (1953) 176.

Google Scholar

[28] M.J. Bierman, Y.K.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-Driven Nanowire Growth and Eshelby Twist. Science 320 (2008) 1060-1063.

DOI: 10.1126/science.1157131

Google Scholar

[29] W. Lu, G. Liu, S. Gao, S. Xing, J. Wang, Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19 (2008) 445711 (pp.445711-445710).

DOI: 10.1088/0957-4484/19/44/445711

Google Scholar

[30] E.P. Melían, O.G. Díaz, J.M.D. Rodríguez, G. Colón, J. Araña, J.H. Melián, J.A. Navío, J.P. Peña, ZnO activation by using activated carbon as a support: Characterisation and photoreactivity. Appl. Catal. A: Gen. 364 (2009) 174-181.

DOI: 10.1016/j.apcata.2009.05.042

Google Scholar

[31] R. Pérez-Hernández, A. Gutiérrez-Martínez, A. Mayoral, F. Leonard-Deepak, M.E. Fernández-García, G. Mondragón-Galicia, M. Miki, M. Jose-Yacaman, Hydrogen Production by Steam Reforming of Methanol over a Ag/ZnO One Dimensional Catalyst. Advanced Materials Research 132 (2010).

DOI: 10.4028/www.scientific.net/amr.132.205

Google Scholar

[32] T. Trinidade, J.D.P. DeJesus, P. O'Brien, Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution J. Mater. Chem. 4 (1994) 1611-1618.

DOI: 10.1039/jm9940401611

Google Scholar

[33] R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, G.S. Kim, G. Khang, H. -S. Shin, Low temperature solution synthesis and characterization of ZnO nano-flowers Mater. Res. Bull. 42 (2007) 1640-1648.

DOI: 10.1016/j.materresbull.2006.11.035

Google Scholar

[34] S. Shao, P. Jia, S. Liu, W. Bai, Stable field emission from rose-like zinc oxide nanostructures synthesized through a hydrothermal route Mater. Lett. 62 (2008 ) 1200-1203.

DOI: 10.1016/j.matlet.2007.08.049

Google Scholar

[35] F. Li, L. Hu, Z. Li, X. Huang, Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB assisted hydrothermal method. J. Alloys Compd. 465 (2008) L14.

DOI: 10.1016/j.jallcom.2007.11.009

Google Scholar

[36] S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10 (2009) 013001, pp.013001-013018.

DOI: 10.1088/1468-6996/10/1/013001

Google Scholar

[37] R.A. McBride, J.M. Kelly, D.E. McCormack, Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts. J. Mater. Chem. 13 (2003) 1196-1201.

DOI: 10.1039/b211723c

Google Scholar

[38] E. De La Rosa, S. Sepulveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo, M. Jose-Yacaman, Controlling the Growth and Luminescence Properties of Well-Faceted ZnO Nanorods. J. Phys. Chem. C 111 (2007) 8489-8495.

DOI: 10.1021/jp071846t

Google Scholar

[39] B. Wen, Y. Huang, J.J. Boland, Controllable Growth of ZnO Nanostructures by a Simple Solvothermal Process. J. Phys. Chem. C 112 (2008) 106-111.

DOI: 10.1021/jp076789i

Google Scholar

[40] S. Sepulveda-Guzman, B. Reeja-Jayan, E. de la Rosa, A. Torres-Castro, V. Gonzalez-Gonzalez, M. Jose-Yacaman, Synthesis of assembled ZnO structures by precipitation method in aqueous media Mater. Chem. Phys. 115 (2009) 172-178.

DOI: 10.1016/j.matchemphys.2008.11.030

Google Scholar

[41] W.K. Burton, N. Cabrera, F.C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces. Philos. Trans. R. Soc. London A 243 (1951) 299-358.

Google Scholar

[42] W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 203 (1999) 186-196.

DOI: 10.1016/s0022-0248(99)00076-7

Google Scholar

[43] Z. Zhang, J. Mu, Hydrothermal synthesis of ZnO nanobundles controlled by PEO-PPO- PEO block copolymers J. Colloid Interface Sci. 307 (2007) 79-82.

DOI: 10.1016/j.jcis.2006.10.035

Google Scholar

[44] E. Bauser, H. Strunk, J. Crystal Growth 51 (1981) 362.

Google Scholar

[45] E. Bauser, H. Strunk, Analysis of dislocations creating monomolecular growth steps. J. Crystal Growth 51 (1981) 362-366.

DOI: 10.1016/0022-0248(81)90321-3

Google Scholar

[46] N. Wang, Y. Cai, R.Q. Zhang, Growth of nanowires. Mater. Sci. Eng., R 60 (2008) 1-51.

Google Scholar

[47] J. Zhan, Y. Bando, J. Hu, D. Golberg, Nanofabrication on ZnO nanowires. Applied Physics Letters 89 (2006) 243111-243113.

DOI: 10.1063/1.2404950

Google Scholar