Physical, Electrical and Magnetic Properties of Nanocrystalline Zr-Mn-Co Prepared by Co-Precipitation Route

Article Preview

Abstract:

Spinel ferrites, which have the general chemical composition MeFe2O4, (Me = Co, Zn, Ni) are of interest due to their electronic, magnetic and optical properties. Nanosized Co-Zr-Mn spinel ferrites with nominal composition CoFe2-2xZrxMnxO4 (0.1≤ x≤0.4) have been prepared by the co-precipitation route. The products are characterized by X-ray diffraction, scanning electron microscopy (SEM) at room temperature, dc electrical resistivity as a function of temperature and dielectric parameters in the frequency range of 100 Hz to 3 MHz are also measured. The lattice constants agree with usual spinel ferrites. The particle size calculated from X-ray data by the Scherrer formula is in the range of 28-30 nm, while the average particle size varies from 15-25 nm obtained from the SEM measurements, X-ray density (Dx), Porosity (P) and bulk density (Dm) for all the samples are calculated. The dc electrical resistivity decreased with the rise in temperature for all the samples, showing a semiconductor like behavior. From the dc electrical resistivity the activation energy and drift mobility are determined. Both the drift mobility and activation energy increase with a rise in x. The dielectric constant, dielectric loss and ac electrical resistivity as a function of frequency are also reported. The low field ac magnetic susceptibility measurement showed that the ferrimagentic transition temperature is in the range of 439±5 K to 658±5 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-121

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Ozgur, Y. Alivov, H. Morkoc, Microwave ferrites, Part 1: Fundamental properties, J. Mater Sci: Mater Electron. 20 (2009) 789-834.

DOI: 10.1007/s10854-009-9923-2

Google Scholar

[2] M.P. Pileni, Nanocrystal Self-Assemblies: Fabrication and collective properties J. Phys. Chem. B. 105(2001) 3358–3371.

DOI: 10.1021/jp0039520

Google Scholar

[3] S. Singhal, J. Singh, S. K Barthwal and K. Chandra, Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1−xNixFe2O4), Journal of Solid State Chemistry 178 (2005) 3183-3189.

DOI: 10.1016/j.jssc.2005.07.020

Google Scholar

[4] R.E. Collin, Fundamental for Microwave Engineering, 2nd edition (IEEE Press, New York, 2000).

Google Scholar

[5] S. Hussain, A. Maqsood, Structural and electrical properties of Pb-doped Sr-hexa ferrites, J. Magn. Magn. Mater. 316 (2007) 73-80.

Google Scholar

[6] S. Hussain, M. Anis-ur-Rehman, A. Maqsood and M.S. Awan, The effect of SiO2 addition on structural, magnetic and electrical properties of strontium hexa-ferrites, J. Cryst. Growth 297 (2006) 403-410.

DOI: 10.1016/j.jcrysgro.2006.10.191

Google Scholar

[7] M. Ajmal, N.A. Shah, A. Maqsood, M.S. Awan, M. Arif, Influence of sintering time on structural, electrical and magnetic properties of Polycrystalline Cu0. 6Zn0. 4Fe2O4 ferrites, J. Alloys Comp. 508 (2010) 226-232.

DOI: 10.1016/j.jallcom.2010.08.067

Google Scholar

[8] J. Amighaian, M. Mozaffari, B. Nasr, Preparation of nano-sized manganese ferrite (MnFe2O4) via coprecipitation method, J. Solid State Phys. 3 (2006) 3188.

DOI: 10.1002/pssc.200567054

Google Scholar

[9] S. Kumar, Batoo, M. Khalid, S. Gautam, B.H. Koo, K.H. Chae, H. Chung, C. G. Lee, Electronic structure and magnetic properties of the Ni0. 2Cd0. 3Fe2. 5−xAlxO4 (0 ≤ x ≤ 0. 4) ferrite nanoparticles, Journal of Nanoscience and Nanotechnology 11 (2011).

Google Scholar

[10] M.N. Ashiq, S. Saleem, M.A. Malana and M. Anis-ur-Rehman, Physical, electrical and magnetic properties of nanocrystalline Zr–Ni doped Mn-ferrite synthesized by the co-precipitation method. J. Alloys Compd. 486 (2009) 640-644.

DOI: 10.1016/j.jallcom.2009.07.007

Google Scholar

[11] I.H. Gul, F. Amin, M. Anis-ur-Rehman, A. Maqsood, Physical and magnetic characterization of co-precipitated nanosize Co–Ni ferrites, Scr. Mater. 56 (2007) 497.

DOI: 10.1016/j.scriptamat.2006.11.020

Google Scholar

[12] I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, Structural, magnetic and electrical properties of Co1-xZnxFe2O4 synthesized by co-precipitation method, J. Magn. Magn. Mater. 311 (2007) 494.

DOI: 10.1016/j.jmmm.2006.08.005

Google Scholar

[13] B.D. Cullity, Elements of X-ray diffraction, Addison-Wesley, Boston, (1976).

Google Scholar

[14] E.J.W. Verwey, F. De. Boer, H. V. Santen, Cation arrangement in spinels, J. Chem. Phys. 16 (1948) 1091.

Google Scholar

[15] A.M. El-Sayed, Electrical conductivity of nickel–zinc and Cr substituted nickel–zinc ferrites, Mater Chem. Phys. 82 (2003) 583.

DOI: 10.1016/s0254-0584(03)00319-5

Google Scholar

[16] R.G. Kharabe, R.S. Devan and B.K. Chougale, Structural and electrical properties of Cd substituted Li–Ni ferrites, J. Alloys Compd. 463 (2008) 67-72.

DOI: 10.1016/j.jallcom.2007.09.061

Google Scholar

[17] D. Ravinder, G.R. Kumar, Y.C. Venudhar, High-temperature thermoelectric power studies of copper substituted nickel ferrites, J. Alloys Compd. 363(2004) 6.

DOI: 10.1016/s0925-8388(03)00474-2

Google Scholar

[18] J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 2, Oxford, New York (1954).

Google Scholar

[19] C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies, Phys. Rev. 83 (1951) 121.

DOI: 10.1103/physrev.83.121

Google Scholar

[20] K.W. Wagner, Annalen der physik, Ann. Phys. 40 (1913) 817.

Google Scholar

[21] K. Iwauchi, Dielectric properties of fine particles of Fe3O4 and some ferrites, Jpn. J. Appl. Phys. 10 (1971) 1520.

Google Scholar