[1]
Zhengquan Li, Yujie Xiong, and Yi Xie, Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route, Inorg. Chem. Vol. 42 (2003), pp.8105-8109.
DOI: 10.1021/ic034029q
Google Scholar
[2]
Juan Wang, Xipo A, and Quan Li, Size-dependent electronic structures of ZnO nanowires, Appl. Phys. Lett. Vol. 86 (2005), p.201911.
DOI: 10.1063/1.1927711
Google Scholar
[3]
Li-li Yang, Jing-hai Yang, Dan-dan Wang, Yong-jun Zhang Ya-xin Wang, Hui-lian Liu, Hou-gang Fan and Ji-hui Lang, Photoluminescence and Raman analysis of ZnO nanowires deposited on Si(1 0 0) via vapor liquid solid process, Physica E. Vol. 40 (2008).
DOI: 10.1016/j.physe.2007.11.025
Google Scholar
[4]
Sepideh Shafiei, Amirhasan Nourbakhsh, Bahram Ganjipour1, Mostafa Zahedifar and Gholamreza Vakili Nezhaad, Diameter optimization of VLS-synthesized ZnO nanowires, using statistical design of experiment Nanotechnology, Vol. 18 (2007), p.35708.
DOI: 10.1088/0957-4484/18/35/355708
Google Scholar
[5]
I.C. Robin, B. Gauron, P. Ferret, C. Tavares, G. Feuillet, Le Si Dang, B. Gayral and J.M. Gérard, Evidence for low density of nonradiative defects in ZnO nanowires grown by metal organic vapor-phase epitaxy, Appl. Phys. Lett. Vol. 91 (2007).
DOI: 10.1063/1.2794790
Google Scholar
[6]
Hyo Jeong Son, Kyung Ah Jeon , Chang Eun Kim, Jong Hoon Kim, Kyung Hwa Yoo, and Sang Yeol Lee, Synthesis of ZnO nanowires by pulsed laser deposition in furnace, Appl. Surf. Sci. Vol. 253 (2007), pp.7848-7850.
DOI: 10.1016/j.apsusc.2007.02.098
Google Scholar
[7]
L.C. Tien, S.J. Pearton , D.P. Norton and F. Ren, Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition, J. Mater. Sci. Vol. 43 (2008), pp.6925-6932.
DOI: 10.1007/s10853-008-2988-0
Google Scholar
[8]
Baomei Wen, Yizhong Huang and J.J. Boland, Controllable Growth of ZnO Nanostructures by a Simple Solvothermal Process, J. Phys. Chem. C. Vol. 112 (2008), pp.106-111.
DOI: 10.1021/jp076789i
Google Scholar
[9]
Min Guo, Peng Diao, Xindong Wang and Shengmin Cai, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films, J. Solid State Chem. Vol. 178 (2005), pp.3210-3215.
DOI: 10.1016/j.jssc.2005.07.013
Google Scholar
[10]
R.B.M. Cross, M.M. De Souza and E. M. Sankara Narayanan, A low temperature combination method for the production of ZnO nanowires, Nanotechnology Vol. 16 (2005), pp.2188-2192.
DOI: 10.1088/0957-4484/16/10/035
Google Scholar
[11]
John V. Foreman, Jianye Li, Hongying Peng, Soojeong Choi, Henry O. Everitt and Jie Liu, Time-Resolved Investigation of Bright Visible Wavelength Luminescence from Sulfur-Doped ZnO Nanowires and Micropowders, Nano Lett. Vol. 6 (2006).
DOI: 10.1021/nl060204z
Google Scholar
[12]
A. Umar, M.M. Rahman, S.H. Kim, Y.B. Hahn, Zinc oxide nanonail based chemical sensor for hydrazine detection, Chem. Commun. Vol. 47 (2008), pp.166-168.
DOI: 10.1039/b711215g
Google Scholar
[13]
X.D. Bai, P.X. Gao, Z. L. Wang, E.G. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts, Appl. Phys. Lett. Vol. 82 (2003), pp.4806-4808.
DOI: 10.1063/1.1587878
Google Scholar
[14]
Matt Law, Joshua Goldberger, and Peidong Yang, Semiconductor nanowires and nanotubes Annu. Rev. Mater. Res. Vol. 34 (2004), pp.83-132.
DOI: 10.1146/annurev.matsci.34.040203.112300
Google Scholar
[15]
C. N. R. Rao, F. L. Deepak, Gautam Gundiah, A. Govindaraj, Inorganic nanowires, Progress in Solid State Chemistry Vol. 31 (2003), pp.5-147.
DOI: 10.1016/j.progsolidstchem.2003.08.001
Google Scholar
[16]
Y.W. Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu and C.H. Liang, Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties, J. Cryst. Growth Vol. 234 (2002), pp.171-175.
DOI: 10.1016/s0022-0248(01)01661-x
Google Scholar
[17]
Michael H. Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, and Peidong Yang, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, Adv. Mater. Vol. 13 (2001), pp.113-116.
DOI: 10.1002/1521-4095(200101)13:2<113::aid-adma113>3.0.co;2-h
Google Scholar
[18]
Seu Yi Li, Pang Lin, Chia Ying Lee and Tseung Yuen Tseng, Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process J. Appl. Phys. Vol. 95 (2004), pp.3711-3716.
DOI: 10.1063/1.1655685
Google Scholar
[19]
Z. Zhang, S. J. Wang, T. Yu and T. Wu, Controlling the Growth Mechanism of ZnO Nanowires by Selecting Catalysts, J. Phys. Chem. C. Vol. 111 (2007), pp.17500-17505.
DOI: 10.1021/jp075296a
Google Scholar
[20]
Mantis Deposition Ltd. Oxford, England. http: /www. mantisdeposition. com.
Google Scholar
[21]
E. Pérez-Tijerina, M. Gracia-Pinilla, S. Mejia-Rosales, U. Ortíz-Mendez, A. Torres and M. Jose-Yacaman, Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas condensation Faraday Discuss. Vol. 138 (2008), pp.353-362.
DOI: 10.1039/b705913m
Google Scholar
[22]
M. Gracia-Pinilla, E. Martınez, G. Silva-Vidaurri, E. Perez-Tijerina, Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation, Nanoscale Res. Lett. Vol. 5 (2010), pp.180-188.
DOI: 10.1007/s11671-009-9462-z
Google Scholar
[23]
C. N. R. Rao, Gautam Gundiah, F. L. Deepak, A. Govindaraj, A. K. Cheetham, Carbon-assisted synthesis of inorganic nanowires, J. Mater. Chem. Vol. 14 (2004), pp.440-450.
DOI: 10.1039/b310387k
Google Scholar
[24]
R.S. Wagner and W.C. Ellis, Vapor-Liquid-Solid mechanism of single crystal growth Appl. Phys. Lett. Vol. 4 (1964), pp.89-90.
DOI: 10.1063/1.1753975
Google Scholar
[25]
S.T. Picraux, S.A. Dayeh, P. Manandhar, D.E. Perea, and S.G. Choi, Silicon and Germanium Nanowires: Growth, Properties, and Integration, JOM-US. Vol. 62 (2010), p.35.
DOI: 10.1007/s11837-010-0057-z
Google Scholar
[26]
P. Buffat and J.P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A. Vol. 13 (1976), pp.2287-2298.
DOI: 10.1103/physreva.13.2287
Google Scholar
[27]
E.W. Petersen, E.M. Likovich, K.J. Russell and V. Narayanamurti, Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles Nanotechnology Vol. 20 (2009), p.405603.
DOI: 10.1088/0957-4484/20/40/405603
Google Scholar
[28]
D. Ito, M. L. Jespersen and J.E. Hutchison, Selective Growth of Vertical ZnO Nanowire Arrays Using Chemically Anchored Gold Nanoparticles, ACSNANO. Vol. 2 (2008), p.2001-(2006).
DOI: 10.1021/nn800438m
Google Scholar
[29]
H.S. Chung, Y. Jung, T.J. Zimmerman, S.H. Lee, J. Kim, S. H. Lee, S.C. Kim, K.H. Oh and R. Agarwal A Generic Approach for Embedded Catalyst-Supported Vertically Aligned Nanowire Growth, Nano Lett. Vol. 8 (2008), pp.1328-1334.
DOI: 10.1021/nl0734037
Google Scholar
[30]
X.M. Sun, X. Chen, Z.X. Deng and Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Mater. Chem. Phys. Vol. 78 (2003), pp.99-104.
DOI: 10.1016/s0254-0584(02)00310-3
Google Scholar
[31]
Y. Li, X. Dong, C. Cheng, X. Zhou, P. Zhang, J. Gao and H. Zhang, Fabrication of ZnO nanorod array-based photodetector with high sensitivity to ultraviolet, Physica B Vol. 404 (2009), pp.4282-4285.
DOI: 10.1016/j.physb.2009.08.011
Google Scholar
[32]
L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai and P. Yang, General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds, Nano Lett. Vol. 5 (2005), pp.1231-1236.
DOI: 10.1021/nl050788p
Google Scholar