[1]
K.J. Klabunde, Nanoscale Materials in Chemistry, (2001).
Google Scholar
[2]
J. Zh. Gao, Y. Ch. Zhao, J.N. Tian, W. Yang, F. Guan, X.Q. Lu, Y.J. Ma, J.G. Hou, and J.W. Kang, Preparation of Ultrafine Cobalt Powder by Chemical Reduction in Aqueous Solution, Chinese Chemical Letters 12(2001) 555–558.
Google Scholar
[3]
M. Raja, J. Subha, F. Binti Ali, and S. Hun Ryu, Synthesis of Copper Nanoparticles by Electroreduction Process, Materials and Manufacturing Processes 23 (2008) 782–785.
DOI: 10.1080/10426910802382080
Google Scholar
[4]
W. Songping, M. Shuyuan, Preparation of Micron Size Copper Powder with Chemical Reduction Method, Materials Letters 60 (2006) 2438–2442.
DOI: 10.1016/j.matlet.2004.08.051
Google Scholar
[5]
L. Weimin, W. Xiaobo, F. Singgou, Process for Producing Copper Nanoparticles (USpatent 7422620, November 23, 2004).
Google Scholar
[6]
A. Sinha, S.K. Das, T.V. Vijaya Kumar, V. Rao, and P. Ramachandrarao, Synthesis of Nanosized Copper Powder by an Aqueous Route, Journal of Materials Synthesis and Processing 7 (1999) 373-377.
DOI: 10.1023/a:1021818014207
Google Scholar
[7]
H. Tani, N. Ogata, Production of Copper Powder (United States Patent, Patent Number: 5, 850, 047, 1998).
Google Scholar
[8]
S. Wu, Preparation of Fine Copper Powder Using Ascorbic Acid as Reducing Agent and Its Application in MLCC, Materials Letters 61 (2007) 1125–1129.
DOI: 10.1016/j.matlet.2006.06.068
Google Scholar
[9]
L. Qi, J. Ma and J. Shen, Synthesis of Copper Nanoparticles in Nonionic Water-in-Oil Microemulsions, Journal of Colloid and Interface Science 186 (1997) 498-500.
DOI: 10.1006/jcis.1996.4647
Google Scholar
[10]
N. Arul Dhas, C. Paul Raj, and A. Gedanken, Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles, Chem. Mater. 10 (1998) 1446–1452.
DOI: 10.1021/cm9708269
Google Scholar
[11]
S.S. Joshi, S.F. Patil, V. Iyer and S. Mahumuni, Radiation Induced Synthesis and Characterization of Copper Nanoparticles, Nanostructured Materials 10 (1998) 1135-1144.
DOI: 10.1016/s0965-9773(98)00153-6
Google Scholar
[12]
F. Tepper, Metallic Nanopowders Produced by the Electro-Exploding Wire Process, International J. of Powder Metallurgy 35 (1999) 39–44.
Google Scholar
[13]
S. Giuffrida, G.G. Condorelli, L.L. Costanzo, and et al. Photochemical Mechanism of the Formation of Nanometer-Sized Copper by UV Irradiation of Ethanol bis(2, 4-Pentandionato) Copper(II) Solutions, Chemistry of Materials 16 (2004) 1260–1266.
DOI: 10.1021/cm034782h
Google Scholar
[14]
A.A. Ponce, and K.J. Klabunde, Chemical and Catalytic Activity of Copper Nanoparticles Prepared via Metal Vapor Synthesis, J. of Molecular Catalysis A-Chemical 225 (2005) 1–6.
DOI: 10.1016/j.molcata.2004.08.019
Google Scholar
[15]
H.T. Zhu, C.Y. Zhang, and Y.S. Yin, Rapid Synthesis of Copper Nanoparticles by Sodium Hypophosphite Reduction in Ethylene Glycol under Microwave Irradiation, J. of Crystal Growth (2004) 722–728.
DOI: 10.1016/j.jcrysgro.2004.07.008
Google Scholar
[16]
Y.D. Li, C.W. Li, H.R. Wang, L.Q. Li, Y.T. Qian, Preparation of Nickel Ultrafine Powder and Crystalline Film by Chemical Control Reduction, Materials Chemistry and Physics 59 (1999) 88-90.
DOI: 10.1016/s0254-0584(99)00015-2
Google Scholar
[17]
D. Wang, D. Sun, H. Yu, and H. Meng, Morphology Controllable Synthesis of Nickel Nanopowders by Chemical Reduction Process, Journal of Crystal Growth 310 (2008) 1195–1201.
DOI: 10.1016/j.jcrysgro.2007.12.052
Google Scholar
[18]
C. Wang, X.M. Zhang, X.F. Qian, Y. Xie, W.Z. Wang, and Y.T. Qian, Preparation of Nanocrystalline Nickel Powders Through Hydrothermal-Reduction Method, Materials Research Bulletin 33 (1998) 1747–1751.
DOI: 10.1016/s0025-5408(98)00180-9
Google Scholar
[19]
H. Guo-yong, X. Sheng-ming, X. Gang, L. Lin-yan,and Zh. Li-feng, Preparation of Fine Nickel Powders via Reduction of Nickel Hydrazine Complex Precursors, Trans. Nonferrous Met. Soc. China 19 (2009) 389−393.
DOI: 10.1016/s1003-6326(08)60283-6
Google Scholar
[20]
J.W. Park, E.H. Chae, S.H. Kim, J.H. Lee, J.W. Kim, S.M. Yoon, J.Y. Choi, Preparation of Fine Ni Powders from Nickel Hydrazine Complex, Materials Chemistry and Physics 97 (2006) 371–378.
DOI: 10.1016/j.matchemphys.2005.08.028
Google Scholar
[21]
Z. Gang Wu, M. Munoz, O. Montero, The Synthesis of Nickel Nanoparticles by Hydrazine Reduction, Advanced Powder Technology 21 (2010) 165-168.
DOI: 10.1016/j.apt.2009.10.012
Google Scholar
[22]
Zh. Ying, J. Shengming, Q. Guanzhou, and Y. Min, Preparation of Ultrafine Nickel Powder by Polyol Method and its Oxidation Product, Materials Science and Engineering B 122 (2005) 222–225.
DOI: 10.1016/j.mseb.2005.06.006
Google Scholar
[23]
W. Songping, J. Li, N. Jing, Z. Zhenou, and L. Song, Preparation of Ultra Fine Copper-Nickel Bimetallic Powders for Conductive Thick Film, Intermetallics 15 (2007) 1316-1321.
DOI: 10.1016/j.intermet.2007.04.001
Google Scholar
[24]
W. Songping, Preparation of Ultra Fine Nickel–Copper Bimetallic Powder for BME-MLCC, Microelectronics Journal 38 (2007) 41–46.
DOI: 10.1016/j.mejo.2006.09.013
Google Scholar
[25]
W. Songping, N. Jing, J. Li, and Z. Zhenou, Preparation of Ultra-Fine Copper–Nickel Bimetallic Powders with Hydrothermal–Reduction Method, Materials Chemistry and Physics 105 (2007) 71–75.
DOI: 10.1016/j.matchemphys.2007.04.027
Google Scholar
[26]
F. Bonet, S. Grugeon, L. Dupont, R. Herrera Urbina, C. Guery, and J.M. Tarascon, Synthesis and characterization of bimetallic Ni–Cu particles, Journal of Solid State Chemistry 172 (2003) 111–115.
DOI: 10.1016/s0022-4596(02)00163-9
Google Scholar
[27]
L. Durivault, O. Brylev, D. Reyter, M. Sarrazin, D. Belanger, and L. Rou, Cu–Ni Materials Prepared by Mechanical Milling: Their Properties and Electrocatalytic Activity towards Nitrate Reduction in Alkaline Medium, Journal of Alloys and Compounds 432 (2007).
DOI: 10.1016/j.jallcom.2006.06.023
Google Scholar
[28]
J. Feng, Ch. Zhang, Preparation of Cu–Ni Alloy Nanocrystallites in Water-in-oil Microemulsions, Journal of Colloid and Interface Science 293 (2006) 414–420.
DOI: 10.1016/j.jcis.2005.06.071
Google Scholar
[29]
J. Ahmed, K.V. Ramanujachary, S.E. Lofland, A. Furiato, G. Gupta, S.M. Shivaprasad, and A.K. Ganguli, Bimetallic Cu–Ni Nanoparticles of Varying Composition (CuNi3, CuNi, Cu3Ni), Colloids and Surfaces A: Physicochem. Eng. Aspects 331 (2008).
DOI: 10.1016/j.colsurfa.2008.08.007
Google Scholar
[30]
M. Meyer, A. Bée, D. Talbot, V. Cabuil, J.M. Boyer, B. Répetti, and R. Garrigos, Synthesis and Dispersion of Ni(OH)2 Platelet-like Nanoparticles in Water, Journal of Colloid and Interface Science 277 (2004) 309–315.
DOI: 10.1016/j.jcis.2004.04.034
Google Scholar
[31]
G.T. Zhou, Q. ZH. Yao, X. Wang, and J.C. Yu, Preparation and Characterization of Nanoplatelets of Nickel Hydroxide and Nickel Oxide, Materials Chemistry and Physics 98 (2006) 267–272.
DOI: 10.1016/j.matchemphys.2005.09.030
Google Scholar
[32]
M.S. Wu, and H.H. Hsieh, Nickel Oxide/Hydroxide Nanoplatelets Synthesized by Chemical Precipitation for Electrochemical Capacitors, Electrochimica Acta 53 (2008) 3427–3435.
DOI: 10.1016/j.electacta.2007.12.005
Google Scholar
[33]
N. Koga, J.M. Criado and H. Tanaka, Reaction Pathway and Kinetics of the Thermal Decomposition of Synthetic Brochantite, Journal of Thermal Analysis 49 (1997) 1467-1475.
DOI: 10.1007/bf01983705
Google Scholar
[34]
S. Vilminot, M. Richard-Plouet, G. Andre, D. Swierczynski, F. Bouree-Vigneron and M. Kurmoo, Nuclear and Magnetic Structures and Magnetic Properties of Synthetic Brochantite, Cu4(OH)6SO4, Dalton Trans. 11 (2006), 1455–1462.
DOI: 10.1039/b510545e
Google Scholar
[35]
J. Chen, D.H. Bradhurst, and et al., Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries, Journal of The Electrochemical Society 146 (1999) 3606-3612.
DOI: 10.1149/1.1392522
Google Scholar
[36]
P. Bera, M. Rajamathi, M.S. Hegde and P. Vishnu Kamath, Thermal Behaviour of Hydroxides, Hydroxysalts and Hydrotalcites, Bull. Mater. Sci. 23 (2000) 141–145.
DOI: 10.1007/bf02706556
Google Scholar
[37]
J. Pan, Y. Sun, P. Wan, Z. Wang, X. Liu, Synthesis, Characterization and Electrochemical Performance of Battery Grade NiOOH, Electrochemistry Communications 7 (2005) 857–862.
DOI: 10.1016/j.elecom.2005.05.004
Google Scholar
[38]
T. Aselage, and K. Keefer, Liquidus relations in Y-Ba-Cu oxides, J. Mater. Res. 3 (1988) 1279-1291.
DOI: 10.1557/jmr.1988.1279
Google Scholar