[1]
W. Xi, S.U. Geissen, Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration, Water Res. 35 (2001) 1256–1262.
DOI: 10.1016/s0043-1354(00)00378-x
Google Scholar
[2]
M.S. Ghamsari, A.R. Bahramian, High transparent sol-gel derived nanostructured TiO2 thin film, Mater. Lett. 62 (2008) 361-364.
DOI: 10.1016/j.matlet.2007.05.053
Google Scholar
[3]
D.W. Kim, S. Lee, H.S. Jung, Effects of heterojunction on photoelectrocatalytic properties of ZnO–TiO2 films, Int. J. Hydrogen Energy 32 (2007) 3137.
DOI: 10.1016/j.ijhydene.2005.12.023
Google Scholar
[4]
R.M. Alberici, W.F. Jardim, Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, J. Appl. Catal. B: Environ. 14 (1997) 55.
DOI: 10.1016/s0926-3373(97)00012-x
Google Scholar
[5]
K.H. Wang, J.M. Jehng, Y.H. Hsieh, C.Y. Chang, The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phase, J. Hazard. Mater. B90 (2002) 63-75.
Google Scholar
[6]
M.L. Sauer, M.A. Hale, D.F. Ollis, Heterogeneous photocatalytic oxidation of dilute toluene-chlorocarbon mixtures in air, J. Photochem. Photobiol. A 88 (1995) 169–178.
DOI: 10.1016/1010-6030(95)04052-h
Google Scholar
[7]
T. Matunaga, R. Tomoda, T. Nakajima, H. Wake, Photochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett. 29 (1985) 211-214.
DOI: 10.1111/j.1574-6968.1985.tb00864.x
Google Scholar
[8]
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphilic surfaces, Nature 388 (1997) 431.
DOI: 10.1038/41233
Google Scholar
[9]
N. Sakai, A. Fujishima, T.Watanabe, K. Hashimoto, Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle, J. Phys. Chem., B 107 (2003) 1028-1035.
DOI: 10.1021/jp022105p
Google Scholar
[10]
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.
DOI: 10.1126/science.1061051
Google Scholar
[11]
M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photoinduced hydrophilic conversion of TiO2/WO3 layered thin films, Chem. Mater. 14 (2002) 4714–4720.
DOI: 10.1021/cm020355c
Google Scholar
[12]
I. Shiyanovskaya, M. Hepel, Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine, J. Electrochem. Soc. 145 (1998) 3981-3985.
DOI: 10.1149/1.1838902
Google Scholar
[13]
G. Marci, V. Augugliaro, M.J. Lopez-Munoz, C. Martin, L. Plamisano, V. Rives, M. Schiavello, R.J.D. Tilley, A.M. Venezia, Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 1. Surface and bulk characterization, J. Phys. Chem. B 105 (2001) 1026-1032.
DOI: 10.1021/jp003172r
Google Scholar
[14]
I. Bedja, P.V. Kamat, Capped semiconductor colloids: Synthesis, Characterisation and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites, J. Phys. Chem. 99 (1995) 9182-88.
DOI: 10.1021/j100022a035
Google Scholar
[15]
A. Fujishima, X. Zhang, Titanium dioxide photocatalysis: Present situation and future approaches, C. R. Chimie 9 (2006) 750–760.
DOI: 10.1016/j.crci.2005.02.055
Google Scholar
[16]
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.
DOI: 10.1021/cr00033a004
Google Scholar
[17]
M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems, Appl. Catal. B 23 (1999) 89–114.
DOI: 10.1016/s0926-3373(99)00069-7
Google Scholar
[18]
M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341–357.
Google Scholar
[19]
O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33–177.
Google Scholar
[20]
J. Yu, J. Xiong, B. Cheng, S. Liu, Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal. B: Environ. 60 (2005) 211–221.
DOI: 10.1016/j.apcatb.2005.03.009
Google Scholar
[21]
K. Rao, S. Mohan, Optical properties of electron‐beam evaporated TiO2 films deposited in an ionized oxygen medium, J. Vac. Sci. Technol. A 8 (1990) 3260.
DOI: 10.1116/1.576575
Google Scholar
[22]
H.S. Kim, D.C. Gilmer, S.A. Campbell, D.L. Polla, Leakage current and electrical breakdown in metal‐organic chemical vapor deposited TiO2 dielectrics on silicon substrates, Appl. Phys. Lett. 69 (1996) 3860.
DOI: 10.1063/1.117129
Google Scholar
[23]
T. Richardson, M. Rubin, Liquid Phase Deposition of Electrochromic Thin Films, Electrochim. Acta. 46 (2001) 2119-2123.
DOI: 10.1016/s0013-4686(01)00389-9
Google Scholar
[24]
A.R. Boccaccini, U. Schindler, H.G. Kruger, Ceramic coatings on carbon and metallic fibers by electrophoretic deposition, Mater. Lett. 51 (2001) 225-230.
DOI: 10.1016/s0167-577x(01)00294-4
Google Scholar
[25]
G. Xu, Z. Zheng, Y. Wu, N. Feng, Effect of silica on the microstructure and photocatalytic properties of titania,Ceramic International 35(2009) 1-5.
Google Scholar
[26]
I. Zhitomirsky, Cathodic electrophoretic deposition of ceramic and organoceramic materials –fundamental aspects, Adv Colloid Interface Sci. 97 (2002) 279–317.
DOI: 10.1016/s0001-8686(01)00068-9
Google Scholar
[27]
Y. Mao, T. J. Park, F. Zhang, H. Zhou, S. S. Wong, Environmentally friendly methodologies for nanostructure synthesis, Small 3 (2007) 1122-1139.
DOI: 10.1002/smll.200700048
Google Scholar
[28]
A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Rev. 1 (2000) 1-21.
Google Scholar
[29]
A. Mills, S.K. Lee, A web-based overview of semiconductor photochemistry-based current commercial applications, J. Photochem. Photobiol. A: Chem. 152 (2002) 233-247.
DOI: 10.1016/s1010-6030(02)00243-5
Google Scholar