Self-Cleaning TiO2 Nanofilms on FTO Glass: Influence of Electrophoretic Deposition and UV Irradiation Conditions

Article Preview

Abstract:

In this research, anatase TiO2 nanoparticles were electrophoretically deposited on the FTO glass. This investigation was focused on the self-cleaning property of TiO2 coatings and the effects of different parameters on this characteristic such as: applied voltages during electrophoretic depositions and durations of UV irradiation. Electrophoretic depositions of suspensions were performed in different voltages of 10, 30 and 60 V (for 10 s) at room temperature. TiO2 coatings were sintered in 450°C for 1 hr. The phase transformation of TiO2 films was considered using XRD. Morphology, average particle size and the thickness of TiO2 films was analyzed using FESEM microscope. The photocatalytic activity of TiO2 films was evaluated by the degradation of aqueous methyl orange (MO) under UV irradiation. The ultraviolet-visible spectrophotometer was used to record the changes of the adsorbancy of the MO solution. Hydrophilicity of TiO2 films was determined by measuring contact angle of water droplet with the surface of TiO2 films. Results represented that decomposition rate of MO solution by TiO2 films enhances from 6.5% to 31% by increasing applied voltage of deposition from 10 to 60V and from 5% to 40% by increasing UV illumination duration from 1 to 5 hours. It was also observed that the contact angles of water droplet with the surface of TiO2 films decrease from 34o to 6.6o by increasing applied voltage from 10 to 60V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-49

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Xi, S.U. Geissen, Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration, Water Res. 35 (2001) 1256–1262.

DOI: 10.1016/s0043-1354(00)00378-x

Google Scholar

[2] M.S. Ghamsari, A.R. Bahramian, High transparent sol-gel derived nanostructured TiO2 thin film, Mater. Lett. 62 (2008) 361-364.

DOI: 10.1016/j.matlet.2007.05.053

Google Scholar

[3] D.W. Kim, S. Lee, H.S. Jung, Effects of heterojunction on photoelectrocatalytic properties of ZnO–TiO2 films, Int. J. Hydrogen Energy 32 (2007) 3137.

DOI: 10.1016/j.ijhydene.2005.12.023

Google Scholar

[4] R.M. Alberici, W.F. Jardim, Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, J. Appl. Catal. B: Environ. 14 (1997) 55.

DOI: 10.1016/s0926-3373(97)00012-x

Google Scholar

[5] K.H. Wang, J.M. Jehng, Y.H. Hsieh, C.Y. Chang, The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phase, J. Hazard. Mater. B90 (2002) 63-75.

Google Scholar

[6] M.L. Sauer, M.A. Hale, D.F. Ollis, Heterogeneous photocatalytic oxidation of dilute toluene-chlorocarbon mixtures in air, J. Photochem. Photobiol. A 88 (1995) 169–178.

DOI: 10.1016/1010-6030(95)04052-h

Google Scholar

[7] T. Matunaga, R. Tomoda, T. Nakajima, H. Wake, Photochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett. 29 (1985) 211-214.

DOI: 10.1111/j.1574-6968.1985.tb00864.x

Google Scholar

[8] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphilic surfaces, Nature 388 (1997) 431.

DOI: 10.1038/41233

Google Scholar

[9] N. Sakai, A. Fujishima, T.Watanabe, K. Hashimoto, Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle, J. Phys. Chem., B 107 (2003) 1028-1035.

DOI: 10.1021/jp022105p

Google Scholar

[10] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[11] M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photoinduced hydrophilic conversion of TiO2/WO3 layered thin films, Chem. Mater. 14 (2002) 4714–4720.

DOI: 10.1021/cm020355c

Google Scholar

[12] I. Shiyanovskaya, M. Hepel, Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine, J. Electrochem. Soc. 145 (1998) 3981-3985.

DOI: 10.1149/1.1838902

Google Scholar

[13] G. Marci, V. Augugliaro, M.J. Lopez-Munoz, C. Martin, L. Plamisano, V. Rives, M. Schiavello, R.J.D. Tilley, A.M. Venezia, Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 1. Surface and bulk characterization, J. Phys. Chem. B 105 (2001) 1026-1032.

DOI: 10.1021/jp003172r

Google Scholar

[14] I. Bedja, P.V. Kamat, Capped semiconductor colloids: Synthesis, Characterisation and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites, J. Phys. Chem. 99 (1995) 9182-88.

DOI: 10.1021/j100022a035

Google Scholar

[15] A. Fujishima, X. Zhang, Titanium dioxide photocatalysis: Present situation and future approaches, C. R. Chimie 9 (2006) 750–760.

DOI: 10.1016/j.crci.2005.02.055

Google Scholar

[16] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.

DOI: 10.1021/cr00033a004

Google Scholar

[17] M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems, Appl. Catal. B 23 (1999) 89–114.

DOI: 10.1016/s0926-3373(99)00069-7

Google Scholar

[18] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341–357.

Google Scholar

[19] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33–177.

Google Scholar

[20] J. Yu, J. Xiong, B. Cheng, S. Liu, Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal. B: Environ. 60 (2005) 211–221.

DOI: 10.1016/j.apcatb.2005.03.009

Google Scholar

[21] K. Rao, S. Mohan, Optical properties of electron‐beam evaporated TiO2 films deposited in an ionized oxygen medium, J. Vac. Sci. Technol. A 8 (1990) 3260.

DOI: 10.1116/1.576575

Google Scholar

[22] H.S. Kim, D.C. Gilmer, S.A. Campbell, D.L. Polla, Leakage current and electrical breakdown in metal‐organic chemical vapor deposited TiO2 dielectrics on silicon substrates, Appl. Phys. Lett. 69 (1996) 3860.

DOI: 10.1063/1.117129

Google Scholar

[23] T. Richardson, M. Rubin, Liquid Phase Deposition of Electrochromic Thin Films, Electrochim. Acta. 46 (2001) 2119-2123.

DOI: 10.1016/s0013-4686(01)00389-9

Google Scholar

[24] A.R. Boccaccini, U. Schindler, H.G. Kruger, Ceramic coatings on carbon and metallic fibers by electrophoretic deposition, Mater. Lett. 51 (2001) 225-230.

DOI: 10.1016/s0167-577x(01)00294-4

Google Scholar

[25] G. Xu, Z. Zheng, Y. Wu, N. Feng, Effect of silica on the microstructure and photocatalytic properties of titania,Ceramic International 35(2009) 1-5.

Google Scholar

[26] I. Zhitomirsky, Cathodic electrophoretic deposition of ceramic and organoceramic materials –fundamental aspects, Adv Colloid Interface Sci. 97 (2002) 279–317.

DOI: 10.1016/s0001-8686(01)00068-9

Google Scholar

[27] Y. Mao, T. J. Park, F. Zhang, H. Zhou, S. S. Wong, Environmentally friendly methodologies for nanostructure synthesis, Small 3 (2007) 1122-1139.

DOI: 10.1002/smll.200700048

Google Scholar

[28] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Rev. 1 (2000) 1-21.

Google Scholar

[29] A. Mills, S.K. Lee, A web-based overview of semiconductor photochemistry-based current commercial applications, J. Photochem. Photobiol. A: Chem. 152 (2002) 233-247.

DOI: 10.1016/s1010-6030(02)00243-5

Google Scholar