Effect of Nature of Surfactant on the Formation of β-Ag2Se Nanoparticles and Optical Properties of β-Ag2Se and ZnS/β-Ag2Se Nanocomposite

Article Preview

Abstract:

Surfactant assisted synthetic route was followed to prepare silver selenide (β-Ag2Se) nanoparticles. The effect of three different surfactants viz., Triton X100, SDS and CTAB in the formation of silver selenide nanoparticles had been examined. Pure and crystalline β-Ag2Se nanophase was obtained in the presence of Triton X100 and SDS. However, the presence of CTAB leads to metallic silver formation. Nano Composite of β-Ag2Se and ZnS was fabricated in the presence of glycine as a molecular linker. The products were characterized by different techniques such as XRD, FT-IR, SEM and TEM. Room temperature photoluminescence spectrum of the ZnS/ β-Ag2Se nanocomposite exhibited two emission peaks at around 286 nm and 392 nm with enhanced intensity (lex = 250 nm).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-105

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.L. Saboungi, Y. Ren, V. Leon, J. Appl. Phys. 103 (2008) 016105, 1-3.

Google Scholar

[2] M. Ferhat, J. Nagao, J. Appl. Phys. 88 (2000) 813-816.

Google Scholar

[3] K.L. Lewis, M.A. Pitt, P.W. Davies, J.R. Milward, Mater. Res. Soc. Symp. Proc. 374 (1994) 105-116.

Google Scholar

[4] P. Boolchand, W.J. Bresser, Nature. 410 (2001) 1070-1073.

Google Scholar

[5] W. Weixiao, L. Jingyin, D. Huimin, H. Jing, L. Shufang, Microchim Acta. 154 (2006) 143-147.

DOI: 10.1007/s00604-005-0465-x

Google Scholar

[6] G. Lucobsky, J. Optoelectron. Adv. M. 7 (2005) 1691-1706.

Google Scholar

[7] G. Beck, J. Janek , Physica. B. 308 (2001) 1086-1089.

Google Scholar

[8] C. Kaito , Y. Saito, K. Fujita, J. Crys. Growth. 94 (1989) 967-977.

Google Scholar

[9] D. M. Wilhelmy, E.J. Matijevi, J. Chem. Soc., Faraday Trans. 80 (1984) 563-570.

Google Scholar

[10] M. Emirdag, G. L. Schimek, W.T. Pennington, J.W. Kolis, J. Solid. State Chem. 144 (1999) 287-296.

Google Scholar

[11] G. Henshaw, I.P. Parkin, G. Shaw, Chem. Commun. (1996) 1095-1096.

Google Scholar

[12] J.H. Zhan, X.G. Yang, S.D. Li, D.W. Wang, Y.T. Qian , Int. J. Ing. Mat. 3 (2001) 47-49.

Google Scholar

[13] D. Ma, M. Zhang, G. Xi, J. Zhang, Y. Qian, Inorg. Chem, 45 (2006) 4845-4849.

Google Scholar

[14] W. Wang, Y. Geng, Y. Qian, M. Ji, Y. Xie, Mater. Res. Bull. 34 (1999) 877-882.

Google Scholar

[15] P.K. Khanna, B.K. Das, Mater Lett. 58 (2004) 1030-1034.

Google Scholar

[16] S.K. Batabyal, C. Basu, A.R. Das, G.S. Sanyal, D. Banerjee, N.R. Bandyopadhyay, Mater. Manuf. Processes. 21 (2006) 694-697.

Google Scholar

[17] G.A. Shaw, I.P. Parkin, Inorg Chem. 40 (2001) 6940-6947.

Google Scholar

[18] R. Harpeness,O. Palchik, A. Gedanken,V. Palchik,S. Amiel, M.A. Slifkin, A.M. Weiss, Chem. Mater. 14 (2002) 2094-2102.

DOI: 10.1021/cm010810p

Google Scholar

[19] N.E. Kelly, S. Lee, K.D.M. Harris, J. Am. Chem. Soc. 123 (2001) 12682-12683.

Google Scholar

[20] N. Sounderya, Y. Zhang, Recent Pat. Biomed. Eng. 1 (2008) 34-42.

Google Scholar

[21] Y. Lee, T. Kim, Y. Sung, Nanotechnology. 17 (2006) 3539-3542.

Google Scholar

[22] T.V. Prevenslik, J. Lumin, 87 (2000) 1210-1212.

Google Scholar

[23] S. Yuan-yuan, Y. Juan, Q. Ke-qiang, Trans. Nonferrous Met. Soc. China. 20 (2010) s211-s215.

Google Scholar

[24] X. Liu, X. Cai, J. Mao, C. Jin, Appl. Surf. Sci. 183 (2003) 103-110.

Google Scholar

[25] J. Li, Y. Xu, Y. Liu, D. Wu, Y. Sun, , China Part. 2 (2004) 266-269.

Google Scholar

[26] M. Mall, P. Kumar, S. Chand, L. Kumar, Chem. Phys. Lett. 495 (2010) 236-240.

Google Scholar

[27] B.O. Dabbousi, J. Rodriguez-Viejo , F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B. 101 (1997) 9463-9475.

DOI: 10.1021/jp971091y

Google Scholar

[28] A.R. Loukanov, C.D. Dushkin, K.I. Papazova, A.V. Kirov, M.V. Abrashev, Eiki Adachi, Colloids Surf. A: Physicochem. Eng. Aspects. 245 (2004) 9-14.

DOI: 10.1016/j.colsurfa.2004.06.016

Google Scholar

[29] W. Jian, J. Zhuang, D. Zhang, J. Dai, W. Yang, Y. Bai, Mater. Chem. Phys, 99 (2006) 494-497.

Google Scholar

[30] G. Zhao, X. Hu, P. Yu, H. Lin, Transition Met. Chem. 29 (2004) 607-612.

Google Scholar

[31] N. Kimura, J. Umemura, S. Hayashi, J. Colloid Interface Sci. 182 (1996) 356-364.

Google Scholar

[32] S.K. Mehta, S. Chaudhary, K.K. Bhasin, R. Kumar, M. Aratono, Colloids Surf. A. Physicochem. Eng. Aspects. 304 (2007) 88-95.

Google Scholar

[33] S.K. Mehta, S. Chaudhary, K.K. Bhasin, J. Nanopart Res. 11 (2009)1759-1766.

Google Scholar

[34] A. Gomez-Zavagliaa, R. Fausto, Phys. Chem. Chem. Phys. 5 (2003) 3154-3161.

Google Scholar

[35] G. Fischer, X. Cao, N. Cox, M. Francis, Chem. Phys. 313 (2005) 39-49.

Google Scholar

[36] H. Cao, Y. Xiao, Y. Lu, J. Yin, B. Li, S. Wu, X. Wu, Nano res. 3 (2010) 863-873.

Google Scholar

[37] I. Mekis, D.V. Talapin, A. Konowski, M. Haase, H. Weller, J. Phys. Chem. B. 107 (2003) 7454 –7462.

Google Scholar

[38] L. Wang, H. Wei, Y. Fan, X. Liu, J. Zhan, Nano Express. 4 (2009) 558-564.

Google Scholar

[39] H.Q. Nguyen, Adv. Nat. Sci.: Nanosci. Nanotechnol. 1 (2010) 025004, 1-4.

Google Scholar

[40] Y.M. Azhniuk, V.M. Dzhagan, A.E. Raevskaya A.L. Stroyuk S.Y. Kuchmiy, M. YaValakh, D.R.T. Zahn, J. Phys.: Condens. Matter, 20 (2008) 455203, 1 -9.

DOI: 10.1088/0953-8984/20/45/455203

Google Scholar