Nitrogen-Doped Carbon Nanotubes and Graphene Nanohybrid for Oxygen Reduction Reaction in Acidic, Alkaline and Neutral Solutions

Article Preview

Abstract:

Nitrogen-doped carbon nanotubes (N-CNTs) have beenprepared on FeNi catalyst by plasma-enhanced chemical vapor deposition in amixture of N2, O2, and CH4. On the opened topof CNT, multi-layer graphene grown self-assembly was observed by transmissionelectron microscopy and high resolution transmission electron microscopy. Thenanohybrid film analyzed by scanning electron microscopy exhibited a porous and3D morphology and pyridinic and graphitic nitrogen structure confirmed by x-rayphotoelectron spectroscopy. Electrochemical measurement indicated that the filmfacilitated about three-electron transferpathway for oxygen reduction reaction in neutral medium and two-electronreductions in both alkaline and acidic solutions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-58

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Liu, G.Z. Cao, Z.G. Yang, D.H. Wang, D. Dubois, X.D. Zhou, G.L. Graff, L.R. Pederson, J.G. Zhang, Oriented nanostructures for energy conversion and storage, ChemSusChem 1 (2008) 676-697.

DOI: 10.1002/cssc.200800087

Google Scholar

[2] H.J. Dai, Carbon nanotubes: opportunities and challenges, Surf. Sci. 500 (2002) 218-241.

Google Scholar

[3] M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications, Science 339 (2013) 535-539.

DOI: 10.1126/science.1222453

Google Scholar

[4] G.C.K. Liu, J.R. Dahn, Fe-N-C oxygen reduction catalysts supported on vertically aligned carbon nanotubes, APPL CATAL A-GEN 347 (2008) 43-49.

DOI: 10.1016/j.apcata.2008.05.035

Google Scholar

[5] C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y.S. Yan, Proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano Lett. 4 (2004) 345-348.

DOI: 10.1021/nl034952p

Google Scholar

[6] M. Lu, S. Kharkwal, H.Y. Ng, S.F.Y. Li, Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells, Biosens Bioelectron 26 (2011) 4728-4732.

DOI: 10.1016/j.bios.2011.05.036

Google Scholar

[7] G.M. Zhou, D.W. Wang, F. Li, L.L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. (Max) Lu, H.M. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries, Chem. Mater. 22 (2010) 5306-5313.

DOI: 10.1021/cm101532x

Google Scholar

[8] S.W. Lee, B.M. Gallant, H.R. Byon, P.T. Hammond, S.H. Yang, Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors, Energy Environ. Sci. 4 (2011) 1972-(1985).

DOI: 10.1039/c0ee00642d

Google Scholar

[9] R.T. Lv, T.X. Cui, M.S. Jun, Q. Zhang, A.Y. Cao, D. S. Su, Z.J. Zhang, S.H. Yoon, J. Miyawaki, I. Mochida, F.Y. Kang, Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support, Adv. Funct. Mater. 21 (2011).

DOI: 10.1002/adfm.201001602

Google Scholar

[10] K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, Science 323 (2009) 760-764.

DOI: 10.1126/science.1168049

Google Scholar

[11] J.C. Bai, Q.Q. Zhu, Z.X. Lv, H.Z. Dong, J.H. Yu, L.F. Dong, Nitrogen-doped graphene a catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions, Int. J. Hydrogen Energy 38 (2013) 1413-1418.

DOI: 10.1016/j.ijhydene.2012.11.039

Google Scholar

[12] G.L. Tian, M.Q. Zhao, D.S. Yu, X.Y. Kong, J.Q. Huang, Q. Zhang, F. Wei, Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction, Small 10 (2014).

DOI: 10.1002/smll.201470063

Google Scholar

[13] D.S. Yu, E. Nagelli, F. Du, L.M. Dai, Metal-free carbon nanomaterials become more active than metal catalysts and last longer, J. Phys. Chem. Lett. 1 (2010) 2165-2173.

DOI: 10.1021/jz100533t

Google Scholar

[14] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science 332 (2011) 443-447.

DOI: 10.1126/science.1200832

Google Scholar

[15] M. Lefèvre, E. Proietti, F. Jaouen, J.P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science 324 (2009) 71-74.

DOI: 10.1126/science.1170051

Google Scholar

[16] J.P. Dodelet, in: J.H. Zagal, F. Bedioui, J.P. Dodelet (Eds. ), N4-macrocyclic metal complexes, Springer, New York, (2006).

DOI: 10.1007/978-0-387-28430-9

Google Scholar

[17] M. Lefèvre, J.P. Dodelet, Molecular oxygen reduction in PEM fuel cell conditions:  ToF-SIMS analysis of Co-based electrocatalysts, J. Phys. Chem. B 109 (2005) 16718-16724.

DOI: 10.1021/jp0529265

Google Scholar

[18] C. Médard, M. Lefèvre, J.P. Dodelet, F. Jaouen, G. Lindbergh, Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports, Electrochim. Acta 51 (2006).

DOI: 10.1016/j.electacta.2005.09.012

Google Scholar

[19] G. Liu, X.G. Li, P. Ganesan, B.N. Popov, Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon, Appl. Catal. B: Environ. 93 (2009) 156-165.

DOI: 10.1016/j.apcatb.2009.09.025

Google Scholar

[20] N.P. Subramanian, X.G. Li, V. Nallathambi, S.P. Kumaraguru, H. Colon-Mercado, G. Wu, J.W. Lee, B.N. Popov, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells, J. Power Sources 188 (2009).

DOI: 10.1016/j.jpowsour.2008.11.087

Google Scholar

[21] E.J. Biddinger, U.S. Ozkan, Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction, J. Phys. Chem. C 114 (2010) 15306-15314.

DOI: 10.1021/jp104074t

Google Scholar

[22] A.E. Shalagina, Z.R. Ismagilov, O.Y. Podyacheva, R.I. Kvon, V.A. Ushakov, Synthesis of nitrogen-containing carbon nanofibers by catalytic decomposition of ethylene/ammonia mixture, Carbon 45 (2007) 1808-1820.

DOI: 10.1016/j.carbon.2007.04.032

Google Scholar

[23] X.P. Gao, Y. Zhang, X. Chen, G.L. Pan, J. Yan, F. Wu, H.T. Yuan, D.Y. Song, Carbon nanotubes filled with metallic nanowires, Carbon 42 (2004) 47-52.

DOI: 10.1016/j.carbon.2003.09.015

Google Scholar

[24] B.K. Pradhan, T. Toba, T. Kyotani, A. Tomita, Inclusion of crystalline iron oxide nanoparticles in uniform carbon nanotubes prepared by a template carbonization method, Chem. Mater. 10 (1998) 2510-2515.

DOI: 10.1021/cm980266t

Google Scholar

[25] T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs, Carbon 43 (2005) 153-161.

DOI: 10.1016/j.carbon.2004.08.033

Google Scholar

[26] J.Y. Chen, X. Wang, X.Q. Cui, G.M. Yang, W.T. Zheng, Amorphous carbon enriched with pyridinic nitrogen as an efficient metal-freee electrocatalyst for oxygen reduction reaction, Chem. Comm. 50 (2014) 557-559.

DOI: 10.1039/c3cc47519k

Google Scholar