[1]
H. Weller, Ber. Bunsen-Ges, Quantum sized semiconcuctor particles in solution in modified layers, Phys. Chem. 95 (1991) 1361-1365.
Google Scholar
[2]
A. S. Brown, M. A. Green, Detailed balance limit for the series constrained two terminal tandem solar cell, Phys. E 14(2002) 96-100.
DOI: 10.1016/s1386-9477(02)00364-8
Google Scholar
[3]
S. Rhle, M. Shalom, A. Zaban, A Quantum-Dot-Sensitized Solar Cells, Chem. Phys. Chem. 11(2010) 2290-2304.
DOI: 10.1002/cphc.201000069
Google Scholar
[4]
S. A. Vanalakar,S. S. Mali, R. C. Pawar, N. L. Tarwal, A. V. Moholkar, J. H. Kim, P. S. Patil, Photoelectrochemical properties of CdS sensitized ZnO nanorod arrays:Effect of nanorod length, J. Appl. Phys. 112 (2012) 044302.
DOI: 10.1063/1.4745881
Google Scholar
[5]
L. Li, X. C. Yang, J. J. Gao, H. N. Tian, J. Z. Zhao, A. Hagfeldt, L. C. Sun, Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte, J. Am. Chem. Soc. 133( 2011) 8458-8460.
DOI: 10.1021/ja201841p
Google Scholar
[6]
R.S. Mane, D.V. Shinde, S. J. Yoon, S. B. Ambade, J. K. Lee, S. H. Han, CdS buffer-layer free highly efficient ZnO-CdSe photoelectrochemical cells, Appl. Phys. Lett. 101(2012) 033906.
DOI: 10.1063/1.4737865
Google Scholar
[7]
H. Lee , M. Wang , P. Chen , D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel , M. K. Nazeeruddin, Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process, Nano Lett. 9 (2009) 4221-4227.
DOI: 10.1021/nl902438d
Google Scholar
[8]
J. H. Bang, P. V. Kamat, Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe, ACS Nano 3(2009) 1467-1476.
DOI: 10.1021/nn900324q
Google Scholar
[9]
T. Ju, R. L. Graham, G. M. Zhai, Y. W. Rodriguez, A. J. Breeze, L. Yang, G. B. Alers, S. A. Carter, High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature, Appl. Phys. Lett. 97 (2010) 043106.
DOI: 10.1063/1.3459146
Google Scholar
[10]
S. D. Sung, I. Lim, P. Kang, C. Lee, Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte, W. I. Lee, Chem. Commun. 49(2013) 6054-6056.
DOI: 10.1039/c3cc40754c
Google Scholar
[11]
R. Plass, S. Pelet, J. Krueger , M. Grätzel, Quantum Dot Sensitization of Organic−Inorganic Hybrid Solar Cells, J. Phys. Chem. B 106(2002) 7578-7580.
DOI: 10.1021/jp020453l
Google Scholar
[12]
W. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry, H. A. Atwater, A. P. Alivisatos, Photovoltaic Performance of Ultrasmall PbSe Quantum Dots, ACS Nano 5(2011) 8140-8147.
DOI: 10.1021/nn202786g
Google Scholar
[13]
S. K. Min, W. C. Choi, H. Y. Cho, M. Yamaguchi, Hydrogenation effects on n +‐p InP solar cell, Appl. Phys. Lett. 64(1994) 1280-1282.
DOI: 10.1063/1.110865
Google Scholar
[14]
M. Gratzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C 4(2003)145-153.
Google Scholar
[15]
C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, J. X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode, Appl. Phys. Lett. 90 (2007) 263501.
DOI: 10.1063/1.2751588
Google Scholar
[16]
G. Ne´stor, L. V. Teresa, M. S. Iva´n, B. Juan, G. Roberto, CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment, J. Phys. Chem. C 113(2009) 4208-4214.
DOI: 10.1021/jp808091d
Google Scholar
[17]
Q. Wang, D. Pan, S. Jiang, X. Ji, L. An, B. Jiang, A solvothermal route to size- and shape-controlled CdSe and CdTe nanocrystals, Journal of Crystal Growth 286 (2006) 83-90.
DOI: 10.1016/j.jcrysgro.2005.05.083
Google Scholar
[18]
M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M.Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 115(1993) 6382-6390.
DOI: 10.1021/ja00067a063
Google Scholar
[19]
X.G. Peng, J. Wickham, A.P. Alivisatos, Kinetics of II-VI and III-V colloidal ..."Focusing" of size distribution, J. Am. Chem. Soc. 120(1998) 5343-5344.
DOI: 10.1021/ja9805425
Google Scholar
[20]
W. W. Yu, L. Qu, W. Guo, X. Peng, Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, Chem. Mater. 15(2003) 2854-2860.
DOI: 10.1021/cm034081k
Google Scholar
[21]
Y-L Lee, Y. S. Lo, Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe, Adv. Funct. Mater. 19(2009) 604-609.
DOI: 10.1002/adfm.200800940
Google Scholar
[22]
J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, R. S. Liu, An oleic acid-capped CdSe quantum-dot sensitized solar cell, Appl. Phys. Lett. 94(2009) 153115.
DOI: 10.1063/1.3117221
Google Scholar
[23]
A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. V. Kamat, Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture, J. Am. Chem. Soc. 130(2008) 4007-4015.
DOI: 10.1021/ja0782706
Google Scholar