CdSe Quantum Dot-Sensitized Solar Cell: Effect of Size and Attach Mode of Quantum Dot

Article Preview

Abstract:

Different size of colloidal CdSe quantum dot (QD) was synthesized through a simple solvothermal route and their structural, morphological and optical properties were characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible absorption spectroscopy and fluorescence spectrometer. XRD and TEM measurement confirmed the formation of CdSe QDs. The red shift of absorption and fluorescence peaks indicated that the size of CdSe QDs increased with prolonging reaction time. The size of QDs varied from 2.2 nm to 3.4 nm by varying reaction time from 1 h to 7 h. The absorption spectra of CdSe/TiO2 electrodes proved that the loading of CdSe QDs on TiO2 can be greatly improved by MPA pretreatment. The effect of size of CdSe QDs on the performance of CdSe QDs sensitized solar cells was investigated. Due to the change of absorption range in the visible region and the conduction band shift for different size of CdSe, the photo-electric power conversion efficiency first increased and then decreased with increasing size of CdSe. The devices fabricated with 3.1 nm diameter CdSe nanoparticles exhibited the highest conversion efficiency of 0.70% under AM 1.5 G irradiation (100 mW cm−2).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-85

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Weller, Ber. Bunsen-Ges, Quantum sized semiconcuctor particles in solution in modified layers, Phys. Chem. 95 (1991) 1361-1365.

Google Scholar

[2] A. S. Brown, M. A. Green, Detailed balance limit for the series constrained two terminal tandem solar cell, Phys. E 14(2002) 96-100.

DOI: 10.1016/s1386-9477(02)00364-8

Google Scholar

[3] S. Rhle, M. Shalom, A. Zaban, A Quantum-Dot-Sensitized Solar Cells, Chem. Phys. Chem. 11(2010) 2290-2304.

DOI: 10.1002/cphc.201000069

Google Scholar

[4] S. A. Vanalakar,S. S. Mali, R. C. Pawar, N. L. Tarwal, A. V. Moholkar, J. H. Kim, P. S. Patil, Photoelectrochemical properties of CdS sensitized ZnO nanorod arrays:Effect of nanorod length, J. Appl. Phys. 112 (2012) 044302.

DOI: 10.1063/1.4745881

Google Scholar

[5] L. Li, X. C. Yang, J. J. Gao, H. N. Tian, J. Z. Zhao, A. Hagfeldt, L. C. Sun, Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte, J. Am. Chem. Soc. 133( 2011) 8458-8460.

DOI: 10.1021/ja201841p

Google Scholar

[6] R.S. Mane, D.V. Shinde, S. J. Yoon, S. B. Ambade, J. K. Lee, S. H. Han, CdS buffer-layer free highly efficient ZnO-CdSe photoelectrochemical cells, Appl. Phys. Lett. 101(2012) 033906.

DOI: 10.1063/1.4737865

Google Scholar

[7] H. Lee , M. Wang , P. Chen , D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel , M. K. Nazeeruddin, Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process, Nano Lett. 9 (2009) 4221-4227.

DOI: 10.1021/nl902438d

Google Scholar

[8] J. H. Bang, P. V. Kamat, Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe, ACS Nano 3(2009) 1467-1476.

DOI: 10.1021/nn900324q

Google Scholar

[9] T. Ju, R. L. Graham, G. M. Zhai, Y. W. Rodriguez, A. J. Breeze, L. Yang, G. B. Alers, S. A. Carter, High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature, Appl. Phys. Lett. 97 (2010) 043106.

DOI: 10.1063/1.3459146

Google Scholar

[10] S. D. Sung, I. Lim,  P. Kang,  C. Lee, Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte,  W. I. Lee, Chem. Commun. 49(2013) 6054-6056.

DOI: 10.1039/c3cc40754c

Google Scholar

[11] R. Plass, S. Pelet, J. Krueger , M. Grätzel, Quantum Dot Sensitization of Organic−Inorganic Hybrid Solar Cells, J. Phys. Chem. B 106(2002) 7578-7580.

DOI: 10.1021/jp020453l

Google Scholar

[12] W. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry, H. A. Atwater, A. P. Alivisatos, Photovoltaic Performance of Ultrasmall PbSe Quantum Dots, ACS Nano 5(2011) 8140-8147.

DOI: 10.1021/nn202786g

Google Scholar

[13] S. K. Min, W. C. Choi, H. Y. Cho, M. Yamaguchi, Hydrogenation effects on n +‐p InP solar cell, Appl. Phys. Lett. 64(1994) 1280-1282.

DOI: 10.1063/1.110865

Google Scholar

[14] M. Gratzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C 4(2003)145-153.

Google Scholar

[15] C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, J. X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode, Appl. Phys. Lett. 90 (2007) 263501.

DOI: 10.1063/1.2751588

Google Scholar

[16] G. Ne´stor, L. V. Teresa, M. S. Iva´n, B. Juan, G. Roberto, CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment, J. Phys. Chem. C 113(2009) 4208-4214.

DOI: 10.1021/jp808091d

Google Scholar

[17] Q. Wang, D. Pan, S. Jiang, X. Ji, L. An, B. Jiang, A solvothermal route to size- and shape-controlled CdSe and CdTe nanocrystals, Journal of Crystal Growth 286 (2006) 83-90.

DOI: 10.1016/j.jcrysgro.2005.05.083

Google Scholar

[18] M. K. Nazeeruddin, A. Kay, I. Rodicio,  R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M.Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 115(1993) 6382-6390.

DOI: 10.1021/ja00067a063

Google Scholar

[19] X.G. Peng, J. Wickham, A.P. Alivisatos,  Kinetics of II-VI and III-V colloidal ..."Focusing" of size distribution, J. Am. Chem. Soc. 120(1998) 5343-5344.

DOI: 10.1021/ja9805425

Google Scholar

[20] W. W. Yu, L. Qu, W. Guo, X. Peng, Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, Chem. Mater. 15(2003) 2854-2860.

DOI: 10.1021/cm034081k

Google Scholar

[21] Y-L Lee, Y. S. Lo, Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe, Adv. Funct. Mater. 19(2009) 604-609.

DOI: 10.1002/adfm.200800940

Google Scholar

[22] J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, R. S. Liu, An oleic acid-capped CdSe quantum-dot sensitized solar cell, Appl. Phys. Lett. 94(2009) 153115.

DOI: 10.1063/1.3117221

Google Scholar

[23] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. V. Kamat, Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture, J. Am. Chem. Soc. 130(2008) 4007-4015.

DOI: 10.1021/ja0782706

Google Scholar