Development and Optimization of Biometal Nanoparticles by Using Mathematical Methodology: A Microbial Approach

Article Preview

Abstract:

This study aimed to biosynthesize and optimize the process of iron oxide nanoparticles producing by Penicillium waksmanii isolated from soil by employing mathematical methodology. The synthesized nanoparticles were formed with fairly well-defined dimensions with good monodispersity determined by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy), DLS (Dynamic Light Scattering), UV-Visible spectroscopy, zeta potential, polydispersity index (PDI) and correlogram of nanoparticles. The effects of different factors such as pH, temperature and concentration of FeCl3 on the particle size were investigated by Box-Behnken experimental design. The R2 value was calculated to be 0.9992 indicating the accuracy and ability of the polynomial model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-115

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J. Nanopart. Res. 10 (2008) 507–517.

DOI: 10.1007/s11051-007-9275-x

Google Scholar

[2] M. Harajyoti, H. Nabanita, A study on biosynthesis of iron nanoparticles by Pleurotus sp, J. Microbiol. Biotech. Res. 1 (2011) 39.

Google Scholar

[3] L. Gao, D. Zhang, M. Chen, Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system, J. Nanopart. Res. 10 (2008) 845-862.

DOI: 10.1007/s11051-008-9357-4

Google Scholar

[4] S. Honary, H. Barabadi, E. Gharaei-Fathabad, F. Naghibi, Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii, Dig. J. Nanomater. Bios. 7 (2012) 999-1005.

DOI: 10.4314/tjpr.v12i1.2

Google Scholar

[5] S. Honary, E. Gharaei-Fathabad, H. Barabadi, Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis, J. Nanosci. Nanotechnol. 13 (2013) 1427-1430.

DOI: 10.1166/jnn.2013.5989

Google Scholar

[6] S.L. C Ferreira, R.E. Bruns, E.G.P. da. Silva, W.N.L. dos. Santos, C.M. Quintela, J.M. David, J.B. de. Andrade, M. Breitkreitz, I.C.S.F. Jardin, B. Barros Neto, Statistical designs and response surface techniques for the optimization of chromatographic systems, J. Chromatogr. A. 1158 (2007).

DOI: 10.1016/j.chroma.2007.03.051

Google Scholar

[7] M.A. Bezerraa, R.E. Santelli, E.P. Oliveiraa, L.S. Villar, L.A. Escaleiraa, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta. 76 (2008) 965–977.

DOI: 10.1016/j.talanta.2008.05.019

Google Scholar

[8] M. Karbasian, S.M. Atyabi, S.D. Siadat, S.B. Momen, D. Norouzian, Optimizing nano-silver formation by Fusarium oxysporum PTCC 5115 employing response surface methodology, Am. J. Agric. Biol. Sci. 3 (2008) 433-437.

DOI: 10.3844/ajabssp.2008.433.437

Google Scholar

[9] A. Gustavo Gonzàlez, Two level factorial experimental designs based on multiple linear regression models: a tutorial digest illustrated by case studies, Analytica Chimica Acta. 360 (1998) 227-241.

DOI: 10.1016/s0003-2670(97)00701-0

Google Scholar

[10] T. Lundstedt, E. Seifert, L. Abramo, B. Thelin, A. Nyström, J. Pettersen, R. Bergman, Experimental design and optimization, Chemom. Intell. Lab. Syst. 42 (1998) 3-40.

DOI: 10.1016/s0169-7439(98)00065-3

Google Scholar

[11] H.M. Arshad, M. Akhtar, S.G. Gilmour, Augmented box-behnken designs for fitting third-order response surfaces, Commun. Stat. Theory. 41 (2012) 4225-4239.

DOI: 10.1080/03610926.2011.568154

Google Scholar

[12] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids. Surf. B. 28 (2003) 313-318.

DOI: 10.1016/s0927-7765(02)00174-1

Google Scholar

[13] N. Durán, P.D. Marcato, O.L. Alves, G.I. Souza, E. Esposito, Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, J. Nanobiotech. 3 (2005) 8-14.

DOI: 10.1186/1477-3155-3-8

Google Scholar

[14] M. Gericke, A. Pinches, Biological synthesis of metal nanoparticles, Hydrometallurgy. 83 (2006) 132-140.

DOI: 10.1016/j.hydromet.2006.03.019

Google Scholar

[15] H.R. Ghorbani, A.A. Safekordi, H. Attar, S.M. Rezayat Sorkhabadi, Biological and non-biological methods for silver nanoparticles synthesis, Chem. Biochem. Eng. Q. 25 (2011) 317-326.

Google Scholar

[16] S. Honary, K. Ghajar, P. Khazaeli, P. Shalchian, Preparation, characterization and antibacterial properties of silver-chitosan nanocomposites using different molecular weight grades of chitosan, Trop. J. Pharm. Res. 10 (2011) 69-74.

DOI: 10.4314/tjpr.v10i1.66543

Google Scholar

[17] V. Deepak, K. Kalishwaralal, S. Ramkumarpandian, S.V. Babu, S.R. Senthilkumar, G. Sangiliyandi, Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology, Bioresour. Technol. 99 (2008).

DOI: 10.1016/j.biortech.2008.03.018

Google Scholar

[18] Z. Sheng, J. Li, Y. Li, Optimization of ultrasonic-assisted extraction of phillyrin from Forsythia suspensa using response surface methodology, J. Med. Plants. Res. 6 (2012) 1633-1644.

DOI: 10.5897/jmpr11.1374

Google Scholar

[19] F. Vladimír, R. Lucia, L. Juraj, Response surface methodology as optimization tool in study of competitive effect of Ca2+ and Mg2+ ions in sorption process of Co2+ by dried activated sludge, JMBFS. 1 (2012) 1235-1249.

Google Scholar

[20] R.V. Muralidhar, R.R. Chirumamila, R. Marchant, P. Nigam, A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources, Biochem. Eng. J. 9 (2001) 17-23.

DOI: 10.1016/s1369-703x(01)00117-6

Google Scholar