Prolonged Release and Cytocompatibility on Immortalized Keratinocytes of CoQ10-Loaded Nanostructured Lipid Carrier

Article Preview

Abstract:

The objective was to manufacture a nanostructured lipid carrier (NLC) for Coenzyme Q10, and to investigate its prolonged release and cytocompatibility of CoQ10-NLC incubated with HaCaT cells. CoQ10-NLC was prepared by hot high-pressure homogenization technique. The characterization of the CoQ10-NLC was determined by size analysis, polydispersity index (PDI), zeta potential assay, in vitro release and cytocompatibility. To analyze the cytocompatibility of CoQ10-NLC, cell viability was investigated by MTT measurement. Morphology of cells was evaluated by HE staining. Cells were exposed to CoQ10-NLC and nuclear morphology were determined using Hoechst 33342 staining. Time-lapse imaging was used to illustrate the dynamics of cell movements. Release investigation exhibited a prolonged release of CoQ10-NLC. MTT measurement, HE and Hoechst 33342 staining corroborated that CoQ10-NLC possessed good cytocompatibility on HaCaT cells. Observation with time-lapse images further confirmed that CoQ10-NLC showed good cytocompatibility. The results demonstrated that CoQ10-NLC with prolonged release had good cytocompatibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-141

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.C. Schwarz, N. Baisaeng, M. Hoppel, M. Low, C.M. Keck, C. Valenta, Ultra-small NLC for improved dermal delivery of coenyzme Q10, Int. J. Pharm. 447 (2013) 213-217.

DOI: 10.1016/j.ijpharm.2013.02.037

Google Scholar

[2] T. Miyamae, M. Seki, T. Naga, S. Uchino, H. Asazuma, T. Yoshida, Y. Iizuka, M. Kikuchi, T. Imagawa, Y. Natsumeda, S. Yokota, Y. Yamamoto, Increased oxidative stress and coenzyme Q10 deficiency in juvenile fibromyalgia: amelioration of hypercholesterolemia and fatigue by ubiquinol-10 supplementation, Redox Rep. 18 (2013) 12-19.

DOI: 10.1179/1351000212y.0000000036

Google Scholar

[3] S. Aboul-Fotouh, Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats, Pharmacol. Biochem. Behav. 104 (2013) 105-112.

DOI: 10.1016/j.pbb.2012.12.027

Google Scholar

[4] T.J.S. Shi, M.D. Zhang, H. Zeberg, J. Nilsson, J. Grunler, S.X. Liu, Q. Xiang, J. Persson, K.J. Fried, S.B. Catrina, M. Watanabe, P. Arhem, K. Brismar, T.G.M. Hokfelt, Coenzyme Q10 prevents peripheral neuropathy and attenuates neuron loss in the db−/db− mouse, a type 2 diabetes model, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 690-695.

DOI: 10.1073/pnas.1220794110

Google Scholar

[5] T. Baluchnejadmojarad, M. Roghani, Coenzyme Q10 Ameliorates Neurodegeneration, Mossy Fiber Sprouting, and Oxidative Stress in Intrahippocampal Kainate Model of Temporal Lobe Epilepsy in Rat, J. Mol. Neurosci. 49 (2013) 194-201.

DOI: 10.1007/s12031-012-9886-2

Google Scholar

[6] V. Mugoni, R. Postel, V. Catanzaro, E. De Luca, E. Turco, G. Digilio, L. Silengo, M.P. Murphy, C. Medana, D.Y.R. Stainier, J. Bakkers, M.M. Santoro, Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis, Cell 152 (2013) 504-518.

DOI: 10.1016/j.cell.2013.01.013

Google Scholar

[7] M. Potgieter, E. Pretorius, M.S. Pepper, Primary and secondary coenzyme Q10 deficiency: the role of therapeutic supplementation, Nutr. Rev. 71 (2013) 180-188.

DOI: 10.1111/nure.12011

Google Scholar

[8] A. Gonenc, A. Hacisevki, Y. Tavil, A. Cengel, M. Torun, Oxidative stress in patients with essential hypertension: A comparison of dippers and non-dippers, Eur. J. Intern. Med. 24 (2013) 139-144.

DOI: 10.1016/j.ejim.2012.08.016

Google Scholar

[9] Y.P. Zhang, A. Eber, Y. Yuan, Z. Yang, Y. Rodriguez, R.C. Levitt, P. Takacs, K.A. Candiotti, Prophylactic and Antinociceptive Effects of Coenzyme Q10 on Diabetic Neuropathic Pain in a Mouse Model of Type 1 Diabetes, Anesthesiology 118 (2013) 945-954.

DOI: 10.1097/aln.0b013e3182829b7b

Google Scholar

[10] L. Garcia-Corzo, M. Luna-Sanchez, C. Doerrier, J.A. Garcia, A. Guaras, R. Acin-Perez, J. Bullejos-Peregrin, A. Lopez, G. Escames, J.A. Enriques, D. Acuna-Castroviejo, L.C. Lopez, Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency, Hum. Mol. Genet. 22 (2013) 1233-1248.

DOI: 10.1093/hmg/dds530

Google Scholar

[11] V.N. Larijani, N. Ahrnadi, I. Zeb, F. Khan, F. Flores, M. Budoff, Beneficial effects of aged garlic extract and coenzyme Q10 on vascular elasticity and endothelial function: The FAITH randomized clinical trial, Nutrition 29 (2013) 71-75.

DOI: 10.1016/j.nut.2012.03.016

Google Scholar

[12] K. Park, Transport of nanostructured lipid carriers across the intestinal barrier, J. Control. Release 166 (2013) 195-195.

DOI: 10.1016/j.jconrel.2013.01.024

Google Scholar

[13] S. Bose, B. Michniak-Kohn, Preparation and characterization of lipid based nanosystems for topical delivery of quercetin, Eur. J. Pharm. Sci. 48 (2013) 442-452.

DOI: 10.1016/j.ejps.2012.12.005

Google Scholar

[14] C.H. Lin, Y.P. Fang, S.A. Al-Suwayeh, S.Y. Yang, J.Y. Fang, Percutaneous Absorption and Antibacterial Activities of Lipid Nanocarriers Loaded with Dual Drugs for Acne Treatment, Biol. Pharm. Bull. 36 (2013) 276-286.

DOI: 10.1248/bpb.b12-00793

Google Scholar

[15] A. Beloqui, M.A. Solinis, A.R. Gascon, A. del Pozo-Rodriguez, A.D. des Rieux, V. Preat, Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier, J. Control. Release 166 (2013) 115-123.

DOI: 10.1016/j.jconrel.2012.12.021

Google Scholar

[16] F.F. Feng, D.D. Zheng, D.R. Zhang, C.X. Duan, Y.C. Wang, L.J. Jia, F.H. Wang, Y. Liu, Q. Gao, Q. Zhang, Preparation, characterization and biodistribution of nanostructured lipid carriers for parenteral delivery of bifendate, J. Microencapsul. 28 (2011) 280-285.

DOI: 10.3109/02652048.2011.559285

Google Scholar

[17] Y.K. Lin, S.A. Al-Suwayeh, Y.L. Leu, F.M. Shen, J.Y. Fang, Squalene-Containing Nanostructured Lipid Carriers Promote Percutaneous Absorption and Hair Follicle Targeting of Diphencyprone for Treating Alopecia Areata, Pharm. Res. 30 (2013) 435-446.

DOI: 10.1007/s11095-012-0888-0

Google Scholar

[18] P.A. Patel, S.C. Patil, D.R. Kalaria, Y.N. Kalia, V.B. Patravale, Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A, Int. J. Pharm. 446 (2013) 16-23.

DOI: 10.1016/j.ijpharm.2013.02.014

Google Scholar

[19] C. Vitorino, J. Almeida, L.M. Goncalves, A.J. Almeida, J.J. Sousa, A. Pais, Co-encapsulating nanostructured lipid carriers for transdermal application: From experimental design to the molecular detail, J. Control. Release 167 (2013) 301-314.

DOI: 10.1016/j.jconrel.2013.02.011

Google Scholar

[20] D.D. Kumbhar, V.B. Pokharkar, Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: Physicochemical investigations, Colloid Surf. A-Physicochem. Eng. Asp. 416 (2013) 32-42.

DOI: 10.1016/j.colsurfa.2012.10.031

Google Scholar

[21] B.C. Tian, W.J. Zhang, H.M. Xu, M.X. Hao, Y.B. Liu, X.G. Yang, W.S. Pan, X.H. Liu, Further investigation of nanostructured lipid carriers as an ocular delivery system: In vivo transcorneal mechanism and in vitro release study, Colloid Surf. B-Biointerfaces 102 (2013) 251-256.

DOI: 10.1016/j.colsurfb.2012.08.021

Google Scholar

[22] M. Shah, Y. Agrawal, Development of Ciprofloxacin HCl-Based Solid Lipid Nanoparticles Using Ouzo Effect: An Experimental Optimization and Comparative Study, J. Dispersion Sci. Technol. 34 (2013) 37-46.

DOI: 10.1080/01932691.2011.646614

Google Scholar

[23] M.C. Weiger, V. Vedham, C.H. Stuelten, K.R. Shou, M. Herrera, M. Sato, W. Losert, C.A. Parent, Real-Time Motion Analysis Reveals Cell Directionality as an Indicator of Breast Cancer Progression, PLoS One 8 (2013) e58859.

DOI: 10.1371/journal.pone.0058859

Google Scholar

[24] M. Nakamura, K. Miyamoto, K. Hayashi, A. Awaad, M. Ochiai, K. Ishimura, Time-lapse fluorescence imaging and quantitative single cell and endosomal analysis of peritoneal macrophages using fluorescent organosilica nanoparticles, Nanomed.-Nanotechnol. Biol. Med. 9 (2013) 274-283.

DOI: 10.1016/j.nano.2012.05.018

Google Scholar

[25] S.P. Wang, T.K. Chen, R.E. Chen, Y.Y. Hu, M.W. Chen, Y.T. Wang, Emodin loaded solid lipid nanoparticles: Preparation, characterization and antitumor activity studies, Int. J. Pharm. 430 (2012) 238-246.

DOI: 10.1016/j.ijpharm.2012.03.027

Google Scholar

[26] J.M. Wang, H.X. Wang, X.F. Zhou, Z.M. Tang, G.Q. Liu, G.Y. Liu, Q. Xia, Physicochemical Characterization, Photo-Stability and Cytotoxicity of Coenzyme Q10-Loading Nanostructured Lipid Carrier, J. Nanosci. Nanotechnol. 12 (2012) 2136-2148.

DOI: 10.1166/jnn.2012.5790

Google Scholar

[27] H.M. Nguyen, I.C. Hwang, J.W. Park, H.J. Park, Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid, J. Microencapsul. 29 (2012) 596-604.

DOI: 10.3109/02652048.2012.668960

Google Scholar

[28] A. Zanotto, K. Coradini, E. Braganhol, R. Schroder, C.M. de Oliveira, A. Simoes-Pires, A.M.O. Battastini, A.R. Pohlmann, S.S. Guterres, C.M. Forcelini, R.C.R. Beck, J.C.F. Moreira, Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment, European Journal of Pharmaceutics and Biopharmaceutics 83 (2013) 156-167.

DOI: 10.1016/j.ejpb.2012.10.019

Google Scholar

[29] M. Abul Kalam, Y. Sultana, A. Ali, M. Aqil, A.K. Mishra, K. Chuttani, I.A. Aljuffali, A. Alshamsan, Part II: Enhancement of transcorneal delivery of gatifloxacin by solid lipid nanoparticles in comparison to commercial aqueous eye drops, J. Biomed. Mater. Res. Part A 101A (2013) 1828-1836.

DOI: 10.1002/jbm.a.34467

Google Scholar

[30] W. Gao, B. Xiang, T.T. Meng, F. Liu, X.R. Qi, Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides, Biomaterials 34 (2013) 4137-4149.

DOI: 10.1016/j.biomaterials.2013.02.014

Google Scholar

[31] G.Z. Gu, H.M. Xia, Q.Y. Hu, Z.Y. Liu, M.Y. Jiang, T. Kang, D.Y. Miao, Y.F. Tu, Z.Q. Pang, Q.X. Song, L. Yao, H.Z. Chen, X.L. Gao, J. Chen, PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy, Biomaterials 34 (2013) 196-208.

DOI: 10.1016/j.biomaterials.2012.09.044

Google Scholar

[32] G. Sharma, C.F. van der Walle, M. Kumar, Antacid co-encapsulated polyester nanoparticles for peroral delivery of insulin: Development, pharmacokinetics, biodistribution and pharmacodynamics, Int. J. Pharm. 440 (2013) 99-110.

DOI: 10.1016/j.ijpharm.2011.12.038

Google Scholar

[33] Z.G. Su, Y.P. Shi, Y.Y. Xiao, M.J. Sun, Q.N. Ping, L. Zong, S. Li, J.X. Niu, A.W. Huang, W.L. You, Y.A. Chen, X. Chen, J. Fei, J. Tian, Effect of octreotide surface density on receptor-mediated endocytosis in vitro and anticancer efficacy of modified nanocarrier in vivo after optimization, Int. J. Pharm. 447 (2013) 281-292.

DOI: 10.1016/j.ijpharm.2013.01.068

Google Scholar

[34] X. Li, Y.J. Chen, M.Q. Wang, Y.J. Ma, W.L. Xia, H.C. Gu, A mesoporous silica nanoparticle - PEI - Fusogenic peptide system for siRNA delivery in cancer therapy, Biomaterials 34 (2013) 1391-1401.

DOI: 10.1016/j.biomaterials.2012.10.072

Google Scholar

[35] D.F. Liu, E. Makila, H.B. Zhang, B. Herranz, M. Kaasalainen, P. Kinnari, J. Salonen, J. Hirvonen, H.A. Santos, Nanostructured Porous Silicon-Solid Lipid Nanocomposite: Towards Enhanced Cytocompatibility and Stability, Reduced Cellular Association, and Prolonged Drug Release, Adv. Funct. Mater. 23 (2013) 1893-1902.

DOI: 10.1002/adfm.201202491

Google Scholar

[36] T. Karosi, I. Sziklai, P. Csomor, Low-Frequency Ultrasound for Biofilm Disruption in Chronic Rhinosinusitis With Nasal Polyposis: in vitro Pilot Study, Laryngoscope 123 (2013) 17-23.

DOI: 10.1002/lary.23633

Google Scholar

[37] C.Z. Bai, S. Choi, K. Nam, S. An, J.S. Park, Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glioma, Int. J. Pharm. 445 (2013) 79-87.

DOI: 10.1016/j.ijpharm.2013.01.057

Google Scholar

[38] G.Z. Jin, T.H. Kim, J.H. Kim, J.E. Won, S.Y. Yoo, S.J. Choi, J.K. Hyun, H.W. Kim, Bone tissue engineering of induced pluripotent stem cells cultured with macrochanneled polymer scaffold, J. Biomed. Mater. Res. Part A 101A (2013) 1283-1291.

DOI: 10.1002/jbm.a.34425

Google Scholar

[39] Y.J. Lee, H.G. Lee, J.H. Yang, Perfluorooctane sulfonate-induced apoptosis of cerebellar granule cells is mediated by ERK 1/2 pathway, Chemosphere 90 (2013) 1597-1602.

DOI: 10.1016/j.chemosphere.2012.08.033

Google Scholar

[40] C. Wang, D.M. Gao, K. Guo, X.N. Kang, K. Jiang, C. Sun, Y. Li, L. Sun, H. Shu, G.Z. Jin, H.Y. Sun, W.Z. Wu, Y.K. Liu, Novel synergistic antitumor effects of rapamycin with bortezomib on hepatocellular carcinoma cells and orthotopic tumor model, Bmc Cancer 12 (2012) 166.

DOI: 10.1186/1471-2407-12-166

Google Scholar

[41] A. Mayle, M. Luo, M. Jeong, M.A. Goodell, Flow Cytometry Analysis of Murine Hematopoietic Stem Cells, Cytom. Part A 83A (2013) 27-37.

DOI: 10.1002/cyto.a.22093

Google Scholar

[42] K. Uchino, G. Hirano, M. Hirahashi, T. Isobe, T. Shirakawa, H. Kusaba, E. Baba, M. Tsuneyoshi, K. Akashi, Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells, Exp. Cell Res. 318 (2012) 1799-1807.

DOI: 10.1016/j.yexcr.2012.04.011

Google Scholar

[43] K.M. Britton, R. Eyre, I.J. Harvey, K. Stemke-Hale, D. Browell, T.W.J. Lennard, A.P. Meeson, Breast cancer, side population cells and ABCG2 expression, Cancer Lett. 323 (2012) 97-105.

DOI: 10.1016/j.canlet.2012.03.041

Google Scholar

[44] H. Jegham, J. Roy, R. Maltais, S. Desnoyers, D. Poirier, A novel aminosteroid of the 5 alpha-androstane-3 alpha,17 beta-diol family induces cell cycle arrest and apoptosis in human promyelocytic leukemia HL-60 cells, Invest. New Drugs 30 (2012) 176-185.

DOI: 10.1007/s10637-010-9548-6

Google Scholar

[45] P.R. Desai, P.P. Shah, P. Hayden, M. Singh, Investigation of Follicular and Non-follicular Pathways for Polyarginine and Oleic Acid-Modified Nanoparticles, Pharm. Res. 30 (2013) 1037-1049.

DOI: 10.1007/s11095-012-0939-6

Google Scholar

[46] T.H. Nguyen, B.T. Lee, In vitro and in vivo studies of rhBMP2-coated PS/PCL fibrous scaffolds for bone regeneration, J. Biomed. Mater. Res. Part A 101A (2013) 797-808.

DOI: 10.1002/jbm.a.34382

Google Scholar

[47] K. Wang, W.F. Li, J.F. Xing, K. Dong, Y. Gao, Preliminary assessment of the safety evaluation of novel pH-sensitive hydrogel, Eur. J. Pharm. Biopharm. 82 (2012) 332-339.

DOI: 10.1016/j.ejpb.2012.07.013

Google Scholar

[48] S.D. Kong, M. Sartor, C.M.J. Hu, W.Z. Zhang, L.F. Zhang, S.H. Jin, Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release, Acta Biomater. 9 (2013) 5447-5452.

DOI: 10.1016/j.actbio.2012.11.006

Google Scholar

[49] V. Yathindranath, L. Rebbouh, D.F. Moore, D.W. Miller, J. van Lierop, T. Hegmann, A Versatile Method for the Reductive, One-Pot Synthesis of Bare, Hydrophilic and Hydrophobic Magnetite Nanoparticles, Adv. Funct. Mater. 21 (2011) 1457-1464.

DOI: 10.1002/adfm.201002111

Google Scholar

[50] P. Pierrat, G. Laverny, G. Creusat, P. Wehrung, J.M. Strub, A. VanDorsselaer, F. Pons, G. Zuber, L. Lebeau, Phospholipid-Detergent Conjugates as Novel Tools for siRNA Delivery, Chem.-Eur. J. 19 (2013) 2344-2355.

DOI: 10.1002/chem.201203071

Google Scholar

[51] Y. Morita, O. Wada-Hiraike, T. Yano, A. Shirane, M. Hirano, H. Hiraike, S. Koyama, H. Oishi, O. Yoshino, Y. Miyamoto, K. Sone, K. Oda, S. Nakagawa, K. Tsutsui, Y. Taketani, Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary, Reprod. Biol. Endocrinol. 10 (2012) 14.

DOI: 10.1186/1477-7827-10-14

Google Scholar

[52] S. Walker-Samuel, J.K.R. Boult, L.D. McPhail, G. Box, S.A. Eccles, S.P. Robinson, Non-invasive in vivo imaging of vessel calibre in orthotopic prostate tumour xenografts, Int. J. Cancer 130 (2012) 1284-1293.

DOI: 10.1002/ijc.26112

Google Scholar

[53] X.M. Chen, J. Liu, T. Wang, J. Shang, Colchicine-induced apoptosis in human normal liver L-02 cells by mitochondrial mediated pathways, Toxicol. Vitro 26 (2012) 649-655.

DOI: 10.1016/j.tiv.2012.01.024

Google Scholar

[54] L. Cohen, N. Koffman, H. Meiri, Y. Yarom, I. Lampl, A. Mizrahi, Time-lapse electrical recordings of single neurons from the mouse neocortex, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 5665-5670.

DOI: 10.1073/pnas.1214434110

Google Scholar

[55] C.M. Megyola, Y. Gao, A.M. Teixeira, J.J. Cheng, K. Heydari, E.C. Cheng, T. Nottoli, D.S. Krause, J. Lu, S.Q. Guo, Dynamic Migration and Cell-Cell Interactions of Early Reprogramming Revealed by High-Resolution Time-Lapse Imaging, Stem Cells 31 (2013) 895-905.

DOI: 10.1002/stem.1323

Google Scholar

[56] P.J. Choi, T.J. Mitchison, Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 6488-6493.

DOI: 10.1073/pnas.1221312110

Google Scholar

[57] L.M. Louhivuori, V. Louhivuori, H.K. Wigren, E. Hakala, L.C. Jansson, T. Nordstrom, M.L. Castren, K.E. Akerman, Role of Low Voltage Activated Calcium Channels in Neuritogenesis and Active Migration of Embryonic Neural Progenitor Cells, Stem Cells Dev. 22 (2013) 1206-1219.

DOI: 10.1089/scd.2012.0234

Google Scholar

[58] M. Ohlin, A.E. Christakou, T. Frisk, B. Onfelt, M. Wiklund, Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate, J. Micromech. Microeng. 23 (2013) 035008.

DOI: 10.1088/0960-1317/23/3/035008

Google Scholar