Different Aspects of Single Wall Carbon Nanotube Functionalization by Aniline Adsorption; Quantum Mechanics/Molecular Mechanics Study

Article Preview

Abstract:

In this research, kinetics and mechanism of aniline adsorption on different single-walled carbon nanotubes (SWCNT) was investigated, using 2-layer ONIOM (Our own N-layered Integrated molecular Orbital and molecular Mechanics) method at the ONIOM (B3LYP/6-31G (d);UFF) level. Various orientations of aniline relative to the carbon nanotube surface were investigated. To investigate the adsorption of aniline, three models including open-ended (model 1), cap-ended (model 2) and 1-cap-ended (model 3) SWCNT have been modeled. Calculated activation energies of adsorption showed that model 2 has the lowest activation energy of 40.8 kcal.mol-1. Natural bond orbital and frontier molecular orbital analysis confirmed the charge transfer from the aniline to the SWCNT. Density of states analysis showed that Fermi level is shifted towards the positive values after aniline adsorption which confirmed the effective interactions between the aniline and the SWCNT. According to the quantum theory of atoms in molecules studies, new bonds formed between the SWCNT and aniline which possess a covalence nature. Finally, based on the quantum reactivity indices, new linear correlations between the chemical hardness, charge transfer and activation energy and the inverse relationship of the electrophilic property and chemical electronic potential in the functionalized carbon nanotubes were obtained. Wiberg bond index calculations show that this reaction is carried out through an asynchronous concerted mechanism. Asynchronicity value in the case of model 2 is higher than other models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-16

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.H. Li, Recovery of aniline from wastewater by nitrobenzene extraction enhanced with salting-out effect. Biomedical and Environmental Sciences 2010, 23 (3), 208-212.

DOI: 10.1016/s0895-3988(10)60054-2

Google Scholar

[2] S. P. Kamble, S. B. Sawant, J. C. Schouten, V. G. Pangarkar, Photocatalytic and photochemical degradation of aniline using concentrated solar radiation. Journal of Chemical Technology and Biotechnology 2003, 78 (8), 865-872.

DOI: 10.1002/jctb.867

Google Scholar

[3] J. Li, Z. Jin, Effect of hypersaline aniline-containing pharmaceutical wastewater on the structure of activated sludge-derived bacterial community. Journal of hazardous materials 2009, 172 (1), 432-438.

DOI: 10.1016/j.jhazmat.2009.07.031

Google Scholar

[4] W. Chu, W. Chou, T. So, The effect of solution pH and peroxide in the TiO2 induced photocatalysis of chlorinated aniline. Journal of hazardous materials 2007, 141 (1), 86-91.

DOI: 10.1016/j.jhazmat.2006.06.093

Google Scholar

[5] C. Karunakaran, S. Senthilvelan, Solar photocatalysis: oxidation of aniline on CdS. Solar energy 2005, 79 (5), 505-512.

DOI: 10.1016/j.solener.2004.12.004

Google Scholar

[6] A. Kumar, N. Mathur, Photocatalytic degradation of aniline at the interface of TiO2 suspensions containing carbonate ions. Journal of colloid and interface science 2006, 300 (1), 244-252.

DOI: 10.1016/j.jcis.2006.03.046

Google Scholar

[7] Y. Han, X. Quan, S. Chen, H. Zhao, C. Cui, Y. Zhao, Electrochemically enhanced adsorption of aniline on activated carbon fibers. Separation and purification technology 2006, 50 (3), 365-372.

DOI: 10.1016/j.seppur.2005.12.011

Google Scholar

[8] N. Jagtap, V. Ramaswamy, Oxidation of aniline over Titania pillared montmorillonite clays, Applied clay science 2006, 33 (2), 89-98.

DOI: 10.1016/j.clay.2006.04.001

Google Scholar

[9] H. Gomes, P. Selvam, S. Dapurkar, J. Figueiredo, J. Faria, Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline. Microporous and mesoporous materials 2005, 86 (1), 287-294.

DOI: 10.1016/j.micromeso.2005.07.022

Google Scholar

[10] L. Wang, S. Barrington, J. W. Kim, Biodegradation of pentyl amine and aniline from petrochemical wastewater. Journal of environmental management 2007, 83 (2), 191-197.

DOI: 10.1016/j.jenvman.2006.02.009

Google Scholar

[11] Q. Zhou, J. Xiao, W. Wang, Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. Journal of Chromatography A 2006, 1125 (2), 152-158.

DOI: 10.1016/j.chroma.2006.05.047

Google Scholar

[12] Q. Zhou, W. Wang, J. Xiao, Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatography. Analytica chimica acta 2006, 559 (2), 200-206.

DOI: 10.1016/j.aca.2005.11.079

Google Scholar

[13] M. A. Salam, R. Burk, Novel application of modified multiwalled carbon nanotubes as a solid phase extraction adsorbent for the determination of polyhalogenated organic pollutants in aqueous solution. Analytical and Bioanalytical Chemistry 2008, 390 (8), 2159-2170.

DOI: 10.1007/s00216-008-1960-9

Google Scholar

[14] M. A. Salam, R. Burk, Solid phase extraction of polyhalogenated pollutants from freshwater using chemically modified multi‐walled carbon nanotubes and their determination by gas chromatography. Journal of Separation Science 2009, 32 (7), 1060-1068.

DOI: 10.1002/jssc.200800593

Google Scholar

[15] G. Sheng, D. Shao, X. Ren, X. Wang, J. Li, Y. Chen, X. Wang, Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. Journal of hazardous materials 2010, 178 (1), 505-516.

DOI: 10.1016/j.jhazmat.2010.01.110

Google Scholar

[16] A. K. Rappé, C. J. Casewit, K. Colwell, Iii, W. Goddard, W. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society 1992, 114 (25), 10024-10035.

DOI: 10.1021/ja00051a040

Google Scholar

[17] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 1988, 38 (6), 3098.

DOI: 10.1103/physreva.38.3098

Google Scholar

[18] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988, 37 (2), 785.

DOI: 10.1103/physrevb.37.785

Google Scholar

[19] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chemical Physics Letters 1989, 157 (3), 200-206.

DOI: 10.1016/0009-2614(89)87234-3

Google Scholar

[20] G. Petersson, M. A. Al-Laham, A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. The Journal of chemical physics 1991, 94, 6081.

DOI: 10.1063/1.460447

Google Scholar

[21] M.J. Frisch, G. W. T., H.B. Schlegel, G.E. Scuseria, M.A.; Robb, J. R. C., J.A. Montgomery, T. Vreven, K.N. Kudin,; J.C. Burant, J. M. M., S.S. Iyengar, J. Tomasi, V. Barone,; B. Mennucci, M. C., G. Scalmani, N. Rega, G.A. Petersson, H.; Nakatsuji, M. H., M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,; M. Ishida, T. N., Y. Honda, O. Kitao, H. Nakai, M.; Klene, X. L., J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken,; C. Adamo, J. J., R. Gomperts, R.E. Stratmann, O. Yazyev,; A.J. Austin, R. C., C. Pomelli, J.W. Ochterski, P.Y.; Ayala, K. M., G.A. Voth, P. Salvador, J.J. Dannenberg,; V.G. Zakrzewski, S. D., A.D. Daniels, M.C. Strain, O.; Farkas, D. K. M., A.D. Rabuck, K. Raghavachari, J.B.; Foresman, J. V. O., Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski,; B.B. Stefanov,G. L., A. Liashenko, P. Piskorz, I.; Komaromi, R. L. M., D.J. Fox, T. Keith, M.A. Al-Laham,; C.Y. Peng,A. N., M. Challacombe, P.M.W. Gill, B.; Johnson, W. C., M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B. 03 (Gaussian. Inc., Wallingford, CT, 2004). (2004).

Google Scholar

[22] Dennington, R. K., Todd; Millam, John. Semichem Inc., Shawnee Mission, KS, , GaussView, Version 5. (2009).

Google Scholar

[23] A. E. Reed, L. A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews 1988, 88 (6), 899-926.

DOI: 10.1021/cr00088a005

Google Scholar

[24] A. E. Reed, F. Weinhold, Natural bond orbital analysis of near‐Hartree–Fock water dimer. The Journal of chemical physics 1983, 78 (6), 4066-4073.

DOI: 10.1063/1.445134

Google Scholar

[25] R. F. Bader, W. A. i. M., A Quantum Theory; Oxford; University Press: New York, Atoms in Molecules, A Quantum Theory. (1990).

Google Scholar

[26] R. F. Bader, W. A. P. M. U.; Hamilton, O., Canada, 2000., AIM 2000 Program. (2000).

Google Scholar

[27] C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, Using redundant internal coordinates to optimize equilibrium geometries and transition states; Journal of Computational Chemistry 1996, 17, (1), 49-56.

DOI: 10.1002/(sici)1096-987x(19960115)17:1<49::aid-jcc5>3.0.co;2-0

Google Scholar

[28] H. Aljohani, M. A. Salam, Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution; Journal of Colloid and Interface Science 2011, 360, (2), 760-767.

DOI: 10.1016/j.jcis.2011.04.097

Google Scholar

[29] B. G. Oliveira, Interplay between dihydrogen and alkali-halogen bonds: is there some covalency upon complexation of ternary systems? Computational and Theoretical Chemistry (2012).

DOI: 10.1016/j.comptc.2012.07.031

Google Scholar

[30] A. Moyano, M. A. Pericas, E. Valenti, A theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (. beta. -lactones); The Journal of Organic Chemistry 1989, 54, (3), 573-582.

DOI: 10.1021/jo00264a014

Google Scholar

[31] M. J. Dewar, Multibond reactions cannot normally be synchronous; Journal of the American Chemical Society 1984, 106, (1), 209-219.

DOI: 10.1021/ja00313a042

Google Scholar

[32] T. Vreven, k. Morokuma, Hybrid Methods: ONIOM(QM: MM) and QM/MM, Annual Reports in Competational Chemistry 2 (2006) 35-51.

DOI: 10.1016/s1574-1400(06)02003-2

Google Scholar

[33] T, Vreven, K. S. Byun, I. Komaromi, S. Dapprich, J. A. Montgomery, K. Morokuma, M. J. Frisch, Combining Quantum Mechanics Methods with Molecular MechanicsMethods in ONIOM, Journal of Chem. Theory and Computation 2 (2006) 815-26.

DOI: 10.1021/ct050289g

Google Scholar