[1]
C.H. Li, Recovery of aniline from wastewater by nitrobenzene extraction enhanced with salting-out effect. Biomedical and Environmental Sciences 2010, 23 (3), 208-212.
DOI: 10.1016/s0895-3988(10)60054-2
Google Scholar
[2]
S. P. Kamble, S. B. Sawant, J. C. Schouten, V. G. Pangarkar, Photocatalytic and photochemical degradation of aniline using concentrated solar radiation. Journal of Chemical Technology and Biotechnology 2003, 78 (8), 865-872.
DOI: 10.1002/jctb.867
Google Scholar
[3]
J. Li, Z. Jin, Effect of hypersaline aniline-containing pharmaceutical wastewater on the structure of activated sludge-derived bacterial community. Journal of hazardous materials 2009, 172 (1), 432-438.
DOI: 10.1016/j.jhazmat.2009.07.031
Google Scholar
[4]
W. Chu, W. Chou, T. So, The effect of solution pH and peroxide in the TiO2 induced photocatalysis of chlorinated aniline. Journal of hazardous materials 2007, 141 (1), 86-91.
DOI: 10.1016/j.jhazmat.2006.06.093
Google Scholar
[5]
C. Karunakaran, S. Senthilvelan, Solar photocatalysis: oxidation of aniline on CdS. Solar energy 2005, 79 (5), 505-512.
DOI: 10.1016/j.solener.2004.12.004
Google Scholar
[6]
A. Kumar, N. Mathur, Photocatalytic degradation of aniline at the interface of TiO2 suspensions containing carbonate ions. Journal of colloid and interface science 2006, 300 (1), 244-252.
DOI: 10.1016/j.jcis.2006.03.046
Google Scholar
[7]
Y. Han, X. Quan, S. Chen, H. Zhao, C. Cui, Y. Zhao, Electrochemically enhanced adsorption of aniline on activated carbon fibers. Separation and purification technology 2006, 50 (3), 365-372.
DOI: 10.1016/j.seppur.2005.12.011
Google Scholar
[8]
N. Jagtap, V. Ramaswamy, Oxidation of aniline over Titania pillared montmorillonite clays, Applied clay science 2006, 33 (2), 89-98.
DOI: 10.1016/j.clay.2006.04.001
Google Scholar
[9]
H. Gomes, P. Selvam, S. Dapurkar, J. Figueiredo, J. Faria, Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline. Microporous and mesoporous materials 2005, 86 (1), 287-294.
DOI: 10.1016/j.micromeso.2005.07.022
Google Scholar
[10]
L. Wang, S. Barrington, J. W. Kim, Biodegradation of pentyl amine and aniline from petrochemical wastewater. Journal of environmental management 2007, 83 (2), 191-197.
DOI: 10.1016/j.jenvman.2006.02.009
Google Scholar
[11]
Q. Zhou, J. Xiao, W. Wang, Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. Journal of Chromatography A 2006, 1125 (2), 152-158.
DOI: 10.1016/j.chroma.2006.05.047
Google Scholar
[12]
Q. Zhou, W. Wang, J. Xiao, Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatography. Analytica chimica acta 2006, 559 (2), 200-206.
DOI: 10.1016/j.aca.2005.11.079
Google Scholar
[13]
M. A. Salam, R. Burk, Novel application of modified multiwalled carbon nanotubes as a solid phase extraction adsorbent for the determination of polyhalogenated organic pollutants in aqueous solution. Analytical and Bioanalytical Chemistry 2008, 390 (8), 2159-2170.
DOI: 10.1007/s00216-008-1960-9
Google Scholar
[14]
M. A. Salam, R. Burk, Solid phase extraction of polyhalogenated pollutants from freshwater using chemically modified multi‐walled carbon nanotubes and their determination by gas chromatography. Journal of Separation Science 2009, 32 (7), 1060-1068.
DOI: 10.1002/jssc.200800593
Google Scholar
[15]
G. Sheng, D. Shao, X. Ren, X. Wang, J. Li, Y. Chen, X. Wang, Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. Journal of hazardous materials 2010, 178 (1), 505-516.
DOI: 10.1016/j.jhazmat.2010.01.110
Google Scholar
[16]
A. K. Rappé, C. J. Casewit, K. Colwell, Iii, W. Goddard, W. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society 1992, 114 (25), 10024-10035.
DOI: 10.1021/ja00051a040
Google Scholar
[17]
A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 1988, 38 (6), 3098.
DOI: 10.1103/physreva.38.3098
Google Scholar
[18]
C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988, 37 (2), 785.
DOI: 10.1103/physrevb.37.785
Google Scholar
[19]
B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chemical Physics Letters 1989, 157 (3), 200-206.
DOI: 10.1016/0009-2614(89)87234-3
Google Scholar
[20]
G. Petersson, M. A. Al-Laham, A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. The Journal of chemical physics 1991, 94, 6081.
DOI: 10.1063/1.460447
Google Scholar
[21]
M.J. Frisch, G. W. T., H.B. Schlegel, G.E. Scuseria, M.A.; Robb, J. R. C., J.A. Montgomery, T. Vreven, K.N. Kudin,; J.C. Burant, J. M. M., S.S. Iyengar, J. Tomasi, V. Barone,; B. Mennucci, M. C., G. Scalmani, N. Rega, G.A. Petersson, H.; Nakatsuji, M. H., M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,; M. Ishida, T. N., Y. Honda, O. Kitao, H. Nakai, M.; Klene, X. L., J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken,; C. Adamo, J. J., R. Gomperts, R.E. Stratmann, O. Yazyev,; A.J. Austin, R. C., C. Pomelli, J.W. Ochterski, P.Y.; Ayala, K. M., G.A. Voth, P. Salvador, J.J. Dannenberg,; V.G. Zakrzewski, S. D., A.D. Daniels, M.C. Strain, O.; Farkas, D. K. M., A.D. Rabuck, K. Raghavachari, J.B.; Foresman, J. V. O., Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski,; B.B. Stefanov,G. L., A. Liashenko, P. Piskorz, I.; Komaromi, R. L. M., D.J. Fox, T. Keith, M.A. Al-Laham,; C.Y. Peng,A. N., M. Challacombe, P.M.W. Gill, B.; Johnson, W. C., M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B. 03 (Gaussian. Inc., Wallingford, CT, 2004). (2004).
Google Scholar
[22]
Dennington, R. K., Todd; Millam, John. Semichem Inc., Shawnee Mission, KS, , GaussView, Version 5. (2009).
Google Scholar
[23]
A. E. Reed, L. A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews 1988, 88 (6), 899-926.
DOI: 10.1021/cr00088a005
Google Scholar
[24]
A. E. Reed, F. Weinhold, Natural bond orbital analysis of near‐Hartree–Fock water dimer. The Journal of chemical physics 1983, 78 (6), 4066-4073.
DOI: 10.1063/1.445134
Google Scholar
[25]
R. F. Bader, W. A. i. M., A Quantum Theory; Oxford; University Press: New York, Atoms in Molecules, A Quantum Theory. (1990).
Google Scholar
[26]
R. F. Bader, W. A. P. M. U.; Hamilton, O., Canada, 2000., AIM 2000 Program. (2000).
Google Scholar
[27]
C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, Using redundant internal coordinates to optimize equilibrium geometries and transition states; Journal of Computational Chemistry 1996, 17, (1), 49-56.
DOI: 10.1002/(sici)1096-987x(19960115)17:1<49::aid-jcc5>3.0.co;2-0
Google Scholar
[28]
H. Aljohani, M. A. Salam, Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution; Journal of Colloid and Interface Science 2011, 360, (2), 760-767.
DOI: 10.1016/j.jcis.2011.04.097
Google Scholar
[29]
B. G. Oliveira, Interplay between dihydrogen and alkali-halogen bonds: is there some covalency upon complexation of ternary systems? Computational and Theoretical Chemistry (2012).
DOI: 10.1016/j.comptc.2012.07.031
Google Scholar
[30]
A. Moyano, M. A. Pericas, E. Valenti, A theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (. beta. -lactones); The Journal of Organic Chemistry 1989, 54, (3), 573-582.
DOI: 10.1021/jo00264a014
Google Scholar
[31]
M. J. Dewar, Multibond reactions cannot normally be synchronous; Journal of the American Chemical Society 1984, 106, (1), 209-219.
DOI: 10.1021/ja00313a042
Google Scholar
[32]
T. Vreven, k. Morokuma, Hybrid Methods: ONIOM(QM: MM) and QM/MM, Annual Reports in Competational Chemistry 2 (2006) 35-51.
DOI: 10.1016/s1574-1400(06)02003-2
Google Scholar
[33]
T, Vreven, K. S. Byun, I. Komaromi, S. Dapprich, J. A. Montgomery, K. Morokuma, M. J. Frisch, Combining Quantum Mechanics Methods with Molecular MechanicsMethods in ONIOM, Journal of Chem. Theory and Computation 2 (2006) 815-26.
DOI: 10.1021/ct050289g
Google Scholar