Origins of Height Distribution within Carbon Nanotube Arrays

Article Preview

Abstract:

We investigated the phenomenon of non-uniform height distribution within CVD-grown carbon nanotube (CNT) arrays. This phenomenon is related to the activity of the catalyst which is affected by the deposition of the carbon source and the subsequent formation of pyrolysis products on the catalyst. We developed a model that considers the effects of deposition of the carbon source as well as the fact that the pyrolysis products also accumulate at the edges of CNT arrays. This model also illustrates that carbon source deposition results in moderate growth over large areas, whereas the pyrolysis products hinder growth significantly over small areas. Together, the two have a competitive effect on CNT growth and bring about the height distribution feature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-24

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354(1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications, Science 297 (2002) 787-792.

DOI: 10.1126/science.1060928

Google Scholar

[3] S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283(1999) 512-514.

DOI: 10.1126/science.283.5401.512

Google Scholar

[4] J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, and O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312(2006) 1034-1037.

DOI: 10.1126/science.1126298

Google Scholar

[5] J. Xu, T.S. Fisher, Enhancement of thermal interface materials with carbon nanotube arrays, Int. J. Heat. Mass. Tran. 49(2006) 1658-1666.

DOI: 10.1016/j.ijheatmasstransfer.2005.09.039

Google Scholar

[6] Y. Li, H. Zhang, G. Xu, L. Gong, Z.Z. Yong, Q.W. Li, and Z.D. Dai, Adhesion performance of gecko-inspired flexible carbon nanotubes dry adhesive, Proc. of SPIE 8686(2013)86860S-11.

DOI: 10.1117/12.2012009

Google Scholar

[7] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306(2004) 1362-1364.

DOI: 10.1126/science.1104962

Google Scholar

[8] W. Zhou, L. Ding, S. Yang, and J. Liu, Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods, ACS Nano 5(2011), 3849-3857.

DOI: 10.1021/nn200198b

Google Scholar

[9] R. Xiang, E. Einarsson, Y. Murakami, J. Shiomi, S. Chiashi, Z.K. Tang, and S. Maruyama, Diameter modulation of vertically aligned single-walled carbon nanotubes, Acs Nano 6(2012) 7472-7479.

DOI: 10.1021/nn302750x

Google Scholar

[10] M. Xu, D. N. Futaba, M. Yumura, and K. Hata, Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect, Acs Nano 6(2012) 5837-5844.

DOI: 10.1021/nn300142j

Google Scholar

[11] P. J. F. Harris, Carbon nanotube science: synthesis, properties and applications, Cambridge University Press, Cambridge, 2009, 1st ed., p.14.

Google Scholar

[12] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, and G. Wang, Large-scale synthesis of aligned carbon nanotubes, Science 274(1996) 1701-1703.

DOI: 10.1126/science.274.5293.1701

Google Scholar

[13] S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283 (1999) 512-514.

DOI: 10.1126/science.283.5401.512

Google Scholar

[14] R. T. K. Baker, Catalytic growth of carbon filaments, Carbon 27(1989) 315-323.

Google Scholar

[15] R.T.K. Baker, P.S. Harris, R.B. Thomas, and R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene, J. Catalysis 30(1973) 86-95.

DOI: 10.1016/0021-9517(73)90055-9

Google Scholar

[16] J. Gavillet, J. Thibault, O. Stephan, H. Amara, A. Loiseau, C. Bichara, J.P. Gaspard, F. Ducastelle, Nucleation and growth of single-walled nanotubes: the role of metallic catalysts, J. Nanosci. Nanotechnol. 4(2004) 346-359.

DOI: 10.1166/jnn.2004.068

Google Scholar

[17] A.R. Harutyunyan, The catalyst for growing single-walled carbon nanotubes by catalytic chemical vapor deposition method, J. Nanosci. Nanotechnol. 9(2009), 2480-2495.

DOI: 10.1166/jnn.2009.1297

Google Scholar

[18] C. T. Wirth, S. Hofmann, J. Robertson, State of the catalyst during carbon nanotube growth, Diam. Relat. Mater. 18(2009) 940-945.

DOI: 10.1016/j.diamond.2009.01.030

Google Scholar

[19] S. Michael, S.P. Sherlock, J.B. In, F. Fornasiero, H.G. Park, A.B. Artyukhin, Y Wang, J.J.D. Yoreo, C.P. Grigoropoulos, O. Bakajin, A.A. Chernov and A. Noy, Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays, Nano Lett. 9(2009).

DOI: 10.1021/nl803277g

Google Scholar

[20] K. B. K. Teo, S. B. Lee, M. Chhowalla, V. Semet, V. Thien Binh, O. Groening, M. Castignolles, A. Loiseau, G. Pirio, P. Legagneux, D. Pribat, D. G. Hasko, H. Ahmed, G. A. J. Amaratung, and W. I. Milne, Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow, Nanotechnology 14(2003).

DOI: 10.1088/0957-4484/14/2/321

Google Scholar

[21] M. Mauger, V. T. Binh, A. Levesque, and D. Guillot, Freestanding vertically aligned arrays of individual carbon nanotubes on metallic substrates for field emission cathodes, Appl. Phys. Lett. 85(2004) 305-307.

DOI: 10.1063/1.1773366

Google Scholar

[22] J. Robertson, G. Zhong, S. Esconjauregui, C. Zhang, M. Fouquet and S. Hofmann, Chemical vapor deposition of carbon nanotube forests, Physica status solidi 249(2012) 2315-2322.

DOI: 10.1002/pssb.201200134

Google Scholar

[23] M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechno. 10(2010) 3739-3758.

DOI: 10.1166/jnn.2010.2939

Google Scholar

[24] L. Zhu, D. W. Hess, C. P. Wong, Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics, J. Phys. Chem. B 110(2006) 5445-5449.

DOI: 10.1021/jp060027q

Google Scholar

[25] K. T. Constantopoulos, C. J. Shearer, A. V. Ellis, N. H. Voelcker, and J. G. Shapter, Carbon nanotubes anchored to silicon for device fabrication, Adv. Mater. 22(2010) 557-571.

DOI: 10.1002/adma.200900945

Google Scholar

[26] J. B. In, C. P. Grigoropoulos, A. A. Chernov, and A. Noy, Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions, ACS Nano 5(2011), 9602-9610.

DOI: 10.1021/nn2028715

Google Scholar

[27] S. Yasuda, T. Hiraoka, D.N. Futaba, T. Yamada, M. Yumura, K. Hata. Existence and kinetics of graphitic carbonaceous impurities in carbon nanotube forests to assess the absolute purity, Nano Lett 9(2009) 769-73.

DOI: 10.1021/nl803389v

Google Scholar

[28] R. Xiang, Z. Yang, Q. Zhang, G. Luo, W. Qian, F. Wei, M. Kadowaki, E. Einarsson, and S. Maruyama, Growth deceleration of vertically aligned carbon nanotube arrays: Catalyst deactivation or feedstock diffusion controlled, J. Phys. Chem. C 112(2008).

DOI: 10.1021/jp710730x

Google Scholar

[29] D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Lijima. Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis, Phys Rev Lett 95(2005) 056104-1-4.

DOI: 10.1103/physrevlett.95.056104

Google Scholar

[30] S. Chakrabarti, T. Nagasaka, Y. Yoshikawa, L. Pan, Y. Nakayama. Growth of super long aligned brush-like carbon nanotubes, Jpn J Appl Phys 45(2006) L720.

DOI: 10.1143/jjap.45.l720

Google Scholar