[1]
Berman, J.J., Chapter 6 - Infectious Diseases and Immune Deficiencies, in Rare Diseases and Orphan Drugs, J.J. Berman, Editor. 2014, Academic Press: San Diego. pp.83-105.
DOI: 10.1016/b978-0-12-419988-0.00006-7
Google Scholar
[2]
Keogh-Brown, M.R., Macroeconomic Effect of Infectious Disease Outbreaks, in Encyclopedia of Health Economics, A.J. Culyer, Editor. 2014, Elsevier: San Diego. pp.177-180.
DOI: 10.1016/b978-0-12-375678-7.00608-8
Google Scholar
[3]
Butler, C.S. and J.P. Boltz, 3. 6 - Biofilm Processes and Control in Water and Wastewater Treatment, in Comprehensive Water Quality and Purification, S. Ahuja, Editor. 2014, Elsevier: Waltham. pp.90-107.
DOI: 10.1016/b978-0-12-382182-9.00083-9
Google Scholar
[4]
Chaturongkasumrit, Y., et al., The effect of polyesterurethane belt surface roughness on Listeria monocytogenes biofilm formation and its cleaning efficiency. Food Control, 2011. 22(12): pp.1893-1899.
DOI: 10.1016/j.foodcont.2011.04.032
Google Scholar
[5]
Srey, S., I.K. Jahid, and S. -D. Ha, Biofilm formation in food industries: A food safety concern. Food Control, 2013. 31(2): pp.572-585.
DOI: 10.1016/j.foodcont.2012.12.001
Google Scholar
[6]
Varin, K.J., N.H. Lin, and Y. Cohen, Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. Journal of Membrane Science, 2013. 446(0): pp.472-481.
DOI: 10.1016/j.memsci.2013.06.064
Google Scholar
[7]
Yoon, H., et al., Biofouling occurrence process and its control in the forward osmosis. Desalination, 2013. 325(0): pp.30-36.
DOI: 10.1016/j.desal.2013.06.018
Google Scholar
[8]
Prabhawathi, V., K. Thirunavukarasu, and M. Doble, A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant. Materials Science and Engineering: C, 2014. 40(0): pp.212-218.
DOI: 10.1016/j.msec.2014.03.050
Google Scholar
[9]
Li, J., et al., Biofilm formation of Candida albicans on implant overdenture materials and its removal. Journal of Dentistry, 2012. 40(8): pp.686-692.
DOI: 10.1016/j.jdent.2012.04.026
Google Scholar
[10]
Marion-Ferey, K., et al., Biofilm removal from silicone tubing: an assessment of the efficacy of dialysis machine decontamination procedures using an in vitro model. Journal of Hospital Infection, 2003. 53(1): pp.64-71.
DOI: 10.1053/jhin.2002.1320
Google Scholar
[11]
Ramanathan, V., et al., Characteristics of Biofilm on Tunneled Cuffed Hemodialysis Catheters in the Presence and Absence of Clinical Infection. American Journal of Kidney Diseases, 2012. 60(6): pp.976-982.
DOI: 10.1053/j.ajkd.2012.06.003
Google Scholar
[12]
Wang, K., et al., Dual antifungal properties of cationic antimicrobial peptides polybia-MPI: Membrane integrity disruption and inhibition of biofilm formation. Peptides, 2014. 56(0): pp.22-29.
DOI: 10.1016/j.peptides.2014.03.005
Google Scholar
[13]
Vega, L.M., et al., Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans. International Biodeterioration & Biodegradation, 2014. 91(0): pp.82-87.
DOI: 10.1016/j.ibiod.2014.03.013
Google Scholar
[14]
Wang, H. -H., et al., Biofilm formation of meat-borne Salmonella enterica and inhibition by the cell-free supernatant from Pseudomonas aeruginosa. Food Control, 2013. 32(2): pp.650-658.
DOI: 10.1016/j.foodcont.2013.01.047
Google Scholar
[15]
Kumar, L., S. Chhibber, and K. Harjai, Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia, 2013. 90(0): pp.73-78.
DOI: 10.1016/j.fitote.2013.06.017
Google Scholar
[16]
Atarijabarzadeh, S., E. Strömberg, and S. Karlsson, Inhibition of biofilm formation on silicone rubber samples using various antimicrobial agents. International Biodeterioration & Biodegradation, 2011. 65(8): pp.1111-1118.
DOI: 10.1016/j.ibiod.2011.09.001
Google Scholar
[17]
van Heerden, J., et al., Antimicrobial coating agents: can biofilm formation on a breast implant be prevented? Journal of Plastic, Reconstructive & Aesthetic Surgery, 2009. 62(5): pp.610-617.
DOI: 10.1016/j.bjps.2007.09.044
Google Scholar
[18]
Lv, H.B., et al., Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. Journal of Dentistry, (0).
DOI: 10.1016/j.jdent.2014.06.003
Google Scholar
[19]
Ramani, M., et al., Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 2014. 117(0): pp.233-239.
DOI: 10.1016/j.colsurfb.2014.02.017
Google Scholar
[20]
Mohan Kumar, K., et al., Synthesis and characterisation of flower shaped Zinc Oxide nanostructures and its antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 104(0): pp.171-174.
DOI: 10.1016/j.saa.2012.11.025
Google Scholar
[21]
El-S'adany, A.F., et al., Fracture resistance of all ceramic crowns supported by zirconia and alumina versus titanium implant abutments. Tanta Dental Journal, 2013. 10(3): pp.103-111.
DOI: 10.1016/j.tdj.2013.11.001
Google Scholar
[22]
Affatato, S., et al., Severe damage of alumina-on-alumina hip implants: Wear assessments at a microscopic level. Journal of the European Ceramic Society, 2012. 32(14): pp.3647-3657.
DOI: 10.1016/j.jeurceramsoc.2012.05.023
Google Scholar
[23]
Bott, T.R., Chapter 6 - Biofouling Monitoring, in Industrial Biofouling, T.R. Bott, Editor. 2011, Elsevier: Amsterdam. pp.161-179.
DOI: 10.1016/b978-0-444-53224-4.10006-3
Google Scholar
[24]
Callow, J.A. and M.E. Callow, Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun, 2011. 2: p.244.
DOI: 10.1038/ncomms1251
Google Scholar
[25]
Yao, J., et al., Marine anti-biofouling system with poly([varepsilon]-caprolactone)/clay composite as carrier of organic antifoulant. Journal of Materials Chemistry B, (2014).
DOI: 10.1039/c4tb00545g
Google Scholar
[26]
Razi, F., et al., The improvement of antibiofouling efficiency of polyethersulfone membrane by functionalization with zwitterionic monomers. Journal of Membrane Science, 2012. 401–402(0): pp.292-299.
DOI: 10.1016/j.memsci.2012.02.020
Google Scholar
[27]
Blok, A.J., et al., Surface initiated polydopamine grafted poly([2-(methacryoyloxy)ethyl]trimethylammonium chloride) coatings to produce reverse osmosis desalination membranes with anti-biofouling properties. Journal of Membrane Science, 2014. 468(0): pp.216-223.
DOI: 10.1016/j.memsci.2014.06.008
Google Scholar
[28]
Venault, A., et al., Biofouling-resistance control of expanded poly(tetrafluoroethylene) membrane via atmospheric plasma-induced surface PEGylation. Journal of Membrane Science, 2013. 439(0): pp.48-57.
DOI: 10.1016/j.memsci.2013.03.041
Google Scholar
[29]
Liu, H., et al., A simple procedure to prepare spherical α-alumina powders. Materials Research Bulletin, 2009. 44(4): pp.785-788.
DOI: 10.1016/j.materresbull.2008.09.018
Google Scholar
[30]
Padmaja, P., et al., Adsorption Isotherm and Pore Characteristics of Nano Alumina Derived from Sol-Gel Boehmite. Journal of Porous Materials, 2004. 11(3): pp.147-155.
DOI: 10.1023/b:jopo.0000038010.54859.2f
Google Scholar
[31]
Granado, S., et al., Influence of [small alpha]- Al2O3 morphology and particle size on drug release from ceramic/polymer composites. Journal of Materials Chemistry, 1997. 7(8): pp.1581-1585.
DOI: 10.1039/a700825b
Google Scholar
[32]
Wang, J.A., et al., Aluminum Local Environment and Defects in the Crystalline Structure of Sol−Gel Alumina Catalyst. The Journal of Physical Chemistry B, 1998. 103(2): pp.299-303.
DOI: 10.1021/jp983130r
Google Scholar
[33]
Reid, K., et al., Biofouling control by hydrophilic surface modification of polypropylene feed spacers by plasma polymerisation. Desalination, 2014. 335(1): pp.108-118.
DOI: 10.1016/j.desal.2013.12.017
Google Scholar
[34]
Matin, A., et al., Surface-modified reverse osmosis membranes applying a copolymer film to reduce adhesion of bacteria as a strategy for biofouling control. Separation and Purification Technology, 2014. 124(0): pp.117-123.
DOI: 10.1016/j.seppur.2013.12.032
Google Scholar
[35]
Yang, H. -L., J.C. -T. Lin, and C. Huang, Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Research, 2009. 43(15): pp.3777-3786.
DOI: 10.1016/j.watres.2009.06.002
Google Scholar
[36]
Cruz-Romero, M.C., et al., Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control, 2013. 34(2): pp.393-397.
DOI: 10.1016/j.foodcont.2013.04.042
Google Scholar
[37]
Wang, L., et al., Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials, 2014. 35(25): pp.6758-6775.
DOI: 10.1016/j.biomaterials.2014.04.085
Google Scholar
[38]
Wang, Y., X. Xue, and H. Yang, Synthesis and Antimicrobial Activity of Boron-doped Titania Nano-materials. Chinese Journal of Chemical Engineering, 2014. 22(4): pp.474-479.
DOI: 10.1016/s1004-9541(14)60063-x
Google Scholar
[39]
Rawani, A., A. Ghosh, and G. Chandra, Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Tropica, 2013. 128(3): pp.613-622.
DOI: 10.1016/j.actatropica.2013.09.007
Google Scholar
[40]
Tank, K.P., et al., Pure and zinc doped nano-hydroxyapatite: Synthesis, characterization, antimicrobial and hemolytic studies. Journal of Crystal Growth, 2014. 401(0): pp.474-479.
DOI: 10.1016/j.jcrysgro.2014.01.062
Google Scholar
[41]
Razeeb, K.M., et al., Antimicrobial properties of vertically aligned nano-tubular copper. Materials Letters, 2014. 128(0): pp.60-63.
DOI: 10.1016/j.matlet.2014.04.130
Google Scholar
[42]
Wang, Y., et al., Characterisation and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes. Food Chemistry, 2012. 132(1): pp.419-427.
DOI: 10.1016/j.foodchem.2011.11.015
Google Scholar
[43]
Zare-Zardini, H., et al., Studying of antifungal activity of functionalized multiwalled carbon nanotubes by microwave-assisted technique. Surface and Interface Analysis, 2013. 45(3): pp.751-755.
DOI: 10.1002/sia.5152
Google Scholar
[44]
Amiri, A., et al., Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Materials Letters, 2012. 72(0): pp.153-156.
DOI: 10.1016/j.matlet.2011.12.114
Google Scholar
[45]
Zardini, H.Z., et al., Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids and Surfaces B: Biointerfaces, 2012. 92(0): pp.196-202.
DOI: 10.1016/j.colsurfb.2011.11.045
Google Scholar
[46]
Zardini, H.Z., et al., Microbial toxicity of ethanolamines—Multiwalled carbon nanotubes. Journal of Biomedical Materials Research Part A, 2014. 102(6): pp.1774-1781.
DOI: 10.1002/jbm.a.34846
Google Scholar
[47]
Amiri, A., et al., Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Materials Letters, (2012).
DOI: 10.1016/j.matlet.2011.12.114
Google Scholar
[48]
Soenen, S.J., et al., Investigating the toxic effects of iron oxide nanoparticles. Methods Enzymol, 2012. 509: pp.195-224.
Google Scholar
[49]
Li, F., et al., Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale, 2013. 5(2): pp.653-662.
DOI: 10.1039/c2nr32156d
Google Scholar