Al2O3 Nanopowders, a Suitable Compound for Active Control of Biofouling

Article Preview

Abstract:

The formation of biofilm (Biofouling) in different surface is the great concern in types of fields, especially in medical and health system as well as in membrane technology. The present study deals with the synthesis and characterization of Al2O3 nanopowders with antibacterial activity which can be a potentially utilized material for biocompatible implants. Nanostructure was synthesized based on sol-gel method and then, crystallite size, and microstructural and morphological characterization of nanostructure were determined by X-ray diffraction, electron-microscopic techniques - scanning electron microscopy (SEM) and transmission electron microscopy (TEM). According to X-ray diffraction, the value of particle size for Al2O3 nanopowders is 20.85 nm. In the following, the antibacterial activity of Al2O3 nanoparticles was assessed on three gram positive and three gram negative bacteria by radial diffusion assay and measurement of minimum inhibitory concentration (MIC). The toxicity of Al2O3 nanopowders on blood cells was also assessed. The results showed that this nanostructure has potent antibacterial activity against gram positive and gram negative bacteria. The synthesized Al2O3 nanopowders showed the antimicrobial activity against antibiotic resistant bacterium, Staphylococcus aureus. Significant antibacterial activity of this nanostructure was seen to have a greatest effect on Bacillus cereus with the MIC value of 9.2 μg/ml; while, among bacterial strains, Salmonella typhimurium was investigated to be the most resistant one with the MIC of 35.6 μg/ml. Al2O3 nanopowders showed no toxicity on blood cells. according to acquired data in this study, Al2O3 nanopowders may be a good material for inhibition of biofilm formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-80

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Berman, J.J., Chapter 6 - Infectious Diseases and Immune Deficiencies, in Rare Diseases and Orphan Drugs, J.J. Berman, Editor. 2014, Academic Press: San Diego. pp.83-105.

DOI: 10.1016/b978-0-12-419988-0.00006-7

Google Scholar

[2] Keogh-Brown, M.R., Macroeconomic Effect of Infectious Disease Outbreaks, in Encyclopedia of Health Economics, A.J. Culyer, Editor. 2014, Elsevier: San Diego. pp.177-180.

DOI: 10.1016/b978-0-12-375678-7.00608-8

Google Scholar

[3] Butler, C.S. and J.P. Boltz, 3. 6 - Biofilm Processes and Control in Water and Wastewater Treatment, in Comprehensive Water Quality and Purification, S. Ahuja, Editor. 2014, Elsevier: Waltham. pp.90-107.

DOI: 10.1016/b978-0-12-382182-9.00083-9

Google Scholar

[4] Chaturongkasumrit, Y., et al., The effect of polyesterurethane belt surface roughness on Listeria monocytogenes biofilm formation and its cleaning efficiency. Food Control, 2011. 22(12): pp.1893-1899.

DOI: 10.1016/j.foodcont.2011.04.032

Google Scholar

[5] Srey, S., I.K. Jahid, and S. -D. Ha, Biofilm formation in food industries: A food safety concern. Food Control, 2013. 31(2): pp.572-585.

DOI: 10.1016/j.foodcont.2012.12.001

Google Scholar

[6] Varin, K.J., N.H. Lin, and Y. Cohen, Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. Journal of Membrane Science, 2013. 446(0): pp.472-481.

DOI: 10.1016/j.memsci.2013.06.064

Google Scholar

[7] Yoon, H., et al., Biofouling occurrence process and its control in the forward osmosis. Desalination, 2013. 325(0): pp.30-36.

DOI: 10.1016/j.desal.2013.06.018

Google Scholar

[8] Prabhawathi, V., K. Thirunavukarasu, and M. Doble, A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant. Materials Science and Engineering: C, 2014. 40(0): pp.212-218.

DOI: 10.1016/j.msec.2014.03.050

Google Scholar

[9] Li, J., et al., Biofilm formation of Candida albicans on implant overdenture materials and its removal. Journal of Dentistry, 2012. 40(8): pp.686-692.

DOI: 10.1016/j.jdent.2012.04.026

Google Scholar

[10] Marion-Ferey, K., et al., Biofilm removal from silicone tubing: an assessment of the efficacy of dialysis machine decontamination procedures using an in vitro model. Journal of Hospital Infection, 2003. 53(1): pp.64-71.

DOI: 10.1053/jhin.2002.1320

Google Scholar

[11] Ramanathan, V., et al., Characteristics of Biofilm on Tunneled Cuffed Hemodialysis Catheters in the Presence and Absence of Clinical Infection. American Journal of Kidney Diseases, 2012. 60(6): pp.976-982.

DOI: 10.1053/j.ajkd.2012.06.003

Google Scholar

[12] Wang, K., et al., Dual antifungal properties of cationic antimicrobial peptides polybia-MPI: Membrane integrity disruption and inhibition of biofilm formation. Peptides, 2014. 56(0): pp.22-29.

DOI: 10.1016/j.peptides.2014.03.005

Google Scholar

[13] Vega, L.M., et al., Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans. International Biodeterioration & Biodegradation, 2014. 91(0): pp.82-87.

DOI: 10.1016/j.ibiod.2014.03.013

Google Scholar

[14] Wang, H. -H., et al., Biofilm formation of meat-borne Salmonella enterica and inhibition by the cell-free supernatant from Pseudomonas aeruginosa. Food Control, 2013. 32(2): pp.650-658.

DOI: 10.1016/j.foodcont.2013.01.047

Google Scholar

[15] Kumar, L., S. Chhibber, and K. Harjai, Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia, 2013. 90(0): pp.73-78.

DOI: 10.1016/j.fitote.2013.06.017

Google Scholar

[16] Atarijabarzadeh, S., E. Strömberg, and S. Karlsson, Inhibition of biofilm formation on silicone rubber samples using various antimicrobial agents. International Biodeterioration & Biodegradation, 2011. 65(8): pp.1111-1118.

DOI: 10.1016/j.ibiod.2011.09.001

Google Scholar

[17] van Heerden, J., et al., Antimicrobial coating agents: can biofilm formation on a breast implant be prevented? Journal of Plastic, Reconstructive & Aesthetic Surgery, 2009. 62(5): pp.610-617.

DOI: 10.1016/j.bjps.2007.09.044

Google Scholar

[18] Lv, H.B., et al., Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. Journal of Dentistry, (0).

DOI: 10.1016/j.jdent.2014.06.003

Google Scholar

[19] Ramani, M., et al., Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 2014. 117(0): pp.233-239.

DOI: 10.1016/j.colsurfb.2014.02.017

Google Scholar

[20] Mohan Kumar, K., et al., Synthesis and characterisation of flower shaped Zinc Oxide nanostructures and its antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 104(0): pp.171-174.

DOI: 10.1016/j.saa.2012.11.025

Google Scholar

[21] El-S'adany, A.F., et al., Fracture resistance of all ceramic crowns supported by zirconia and alumina versus titanium implant abutments. Tanta Dental Journal, 2013. 10(3): pp.103-111.

DOI: 10.1016/j.tdj.2013.11.001

Google Scholar

[22] Affatato, S., et al., Severe damage of alumina-on-alumina hip implants: Wear assessments at a microscopic level. Journal of the European Ceramic Society, 2012. 32(14): pp.3647-3657.

DOI: 10.1016/j.jeurceramsoc.2012.05.023

Google Scholar

[23] Bott, T.R., Chapter 6 - Biofouling Monitoring, in Industrial Biofouling, T.R. Bott, Editor. 2011, Elsevier: Amsterdam. pp.161-179.

DOI: 10.1016/b978-0-444-53224-4.10006-3

Google Scholar

[24] Callow, J.A. and M.E. Callow, Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun, 2011. 2: p.244.

DOI: 10.1038/ncomms1251

Google Scholar

[25] Yao, J., et al., Marine anti-biofouling system with poly([varepsilon]-caprolactone)/clay composite as carrier of organic antifoulant. Journal of Materials Chemistry B, (2014).

DOI: 10.1039/c4tb00545g

Google Scholar

[26] Razi, F., et al., The improvement of antibiofouling efficiency of polyethersulfone membrane by functionalization with zwitterionic monomers. Journal of Membrane Science, 2012. 401–402(0): pp.292-299.

DOI: 10.1016/j.memsci.2012.02.020

Google Scholar

[27] Blok, A.J., et al., Surface initiated polydopamine grafted poly([2-(methacryoyloxy)ethyl]trimethylammonium chloride) coatings to produce reverse osmosis desalination membranes with anti-biofouling properties. Journal of Membrane Science, 2014. 468(0): pp.216-223.

DOI: 10.1016/j.memsci.2014.06.008

Google Scholar

[28] Venault, A., et al., Biofouling-resistance control of expanded poly(tetrafluoroethylene) membrane via atmospheric plasma-induced surface PEGylation. Journal of Membrane Science, 2013. 439(0): pp.48-57.

DOI: 10.1016/j.memsci.2013.03.041

Google Scholar

[29] Liu, H., et al., A simple procedure to prepare spherical α-alumina powders. Materials Research Bulletin, 2009. 44(4): pp.785-788.

DOI: 10.1016/j.materresbull.2008.09.018

Google Scholar

[30] Padmaja, P., et al., Adsorption Isotherm and Pore Characteristics of Nano Alumina Derived from Sol-Gel Boehmite. Journal of Porous Materials, 2004. 11(3): pp.147-155.

DOI: 10.1023/b:jopo.0000038010.54859.2f

Google Scholar

[31] Granado, S., et al., Influence of [small alpha]- Al2O3 morphology and particle size on drug release from ceramic/polymer composites. Journal of Materials Chemistry, 1997. 7(8): pp.1581-1585.

DOI: 10.1039/a700825b

Google Scholar

[32] Wang, J.A., et al., Aluminum Local Environment and Defects in the Crystalline Structure of Sol−Gel Alumina Catalyst. The Journal of Physical Chemistry B, 1998. 103(2): pp.299-303.

DOI: 10.1021/jp983130r

Google Scholar

[33] Reid, K., et al., Biofouling control by hydrophilic surface modification of polypropylene feed spacers by plasma polymerisation. Desalination, 2014. 335(1): pp.108-118.

DOI: 10.1016/j.desal.2013.12.017

Google Scholar

[34] Matin, A., et al., Surface-modified reverse osmosis membranes applying a copolymer film to reduce adhesion of bacteria as a strategy for biofouling control. Separation and Purification Technology, 2014. 124(0): pp.117-123.

DOI: 10.1016/j.seppur.2013.12.032

Google Scholar

[35] Yang, H. -L., J.C. -T. Lin, and C. Huang, Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Research, 2009. 43(15): pp.3777-3786.

DOI: 10.1016/j.watres.2009.06.002

Google Scholar

[36] Cruz-Romero, M.C., et al., Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control, 2013. 34(2): pp.393-397.

DOI: 10.1016/j.foodcont.2013.04.042

Google Scholar

[37] Wang, L., et al., Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials, 2014. 35(25): pp.6758-6775.

DOI: 10.1016/j.biomaterials.2014.04.085

Google Scholar

[38] Wang, Y., X. Xue, and H. Yang, Synthesis and Antimicrobial Activity of Boron-doped Titania Nano-materials. Chinese Journal of Chemical Engineering, 2014. 22(4): pp.474-479.

DOI: 10.1016/s1004-9541(14)60063-x

Google Scholar

[39] Rawani, A., A. Ghosh, and G. Chandra, Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Tropica, 2013. 128(3): pp.613-622.

DOI: 10.1016/j.actatropica.2013.09.007

Google Scholar

[40] Tank, K.P., et al., Pure and zinc doped nano-hydroxyapatite: Synthesis, characterization, antimicrobial and hemolytic studies. Journal of Crystal Growth, 2014. 401(0): pp.474-479.

DOI: 10.1016/j.jcrysgro.2014.01.062

Google Scholar

[41] Razeeb, K.M., et al., Antimicrobial properties of vertically aligned nano-tubular copper. Materials Letters, 2014. 128(0): pp.60-63.

DOI: 10.1016/j.matlet.2014.04.130

Google Scholar

[42] Wang, Y., et al., Characterisation and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes. Food Chemistry, 2012. 132(1): pp.419-427.

DOI: 10.1016/j.foodchem.2011.11.015

Google Scholar

[43] Zare-Zardini, H., et al., Studying of antifungal activity of functionalized multiwalled carbon nanotubes by microwave-assisted technique. Surface and Interface Analysis, 2013. 45(3): pp.751-755.

DOI: 10.1002/sia.5152

Google Scholar

[44] Amiri, A., et al., Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Materials Letters, 2012. 72(0): pp.153-156.

DOI: 10.1016/j.matlet.2011.12.114

Google Scholar

[45] Zardini, H.Z., et al., Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids and Surfaces B: Biointerfaces, 2012. 92(0): pp.196-202.

DOI: 10.1016/j.colsurfb.2011.11.045

Google Scholar

[46] Zardini, H.Z., et al., Microbial toxicity of ethanolamines—Multiwalled carbon nanotubes. Journal of Biomedical Materials Research Part A, 2014. 102(6): pp.1774-1781.

DOI: 10.1002/jbm.a.34846

Google Scholar

[47] Amiri, A., et al., Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Materials Letters, (2012).

DOI: 10.1016/j.matlet.2011.12.114

Google Scholar

[48] Soenen, S.J., et al., Investigating the toxic effects of iron oxide nanoparticles. Methods Enzymol, 2012. 509: pp.195-224.

Google Scholar

[49] Li, F., et al., Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale, 2013. 5(2): pp.653-662.

DOI: 10.1039/c2nr32156d

Google Scholar