Optimization of Gold Nanoparticle Biosynthesis by Escherichia coli DH5α and its Conjugation with Gentamicin

Article Preview

Abstract:

Metal nanoparticles are one option for targeted drug delivery. In order to increase antibiotic efficiency and decrease its side effects, antibiotic conjugated nanoparticles have been known as a suitable approach. The aim of this study was optimization of gold nanoparticle biosynthesis by Escherichia coli DH5α and its conjugation with gentamicin. For this purpose gold nanoparticles were biosynthesized from HAuCl4 and confirmed by Uv/ Vis, XRD, DLS and SEM. Then the effects of different parameters on optimum conditions for gold nanoparticles production were investigated. The MIC and MBC of gentamicin and its conjugate were investigated against E. coli, Clostridium perfringens and Clostridium botulinum. The results revealed that among different treatments, centrifuge (10000 rpm, 10 min) and sonication are the optimum conditions for gold nanoparticle production with less than 10 nm sizes. Filtration was also the best method for purifying nanoparticles. The conjugated nanoparticles significantly reduced the MIC of gentamicin against E. coli and also overcame the natural resistance of tested anaerobic bacteria. In conclusion, the optimized method is an effective, inexpensive and environmental friendly method for biosynthesis of gold nanoparticles. Overcoming natural resistance of anaerobic bacteria using antibiotic conjugates with nanoparticles provides hopes for further experiments and in vivo studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-105

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Ghosh, G. Han, M. De, C.K. Kim and V. Rotello, Gold nanoparticles in delivery applications. Adv. Drug. Deliv. Rev. 60 (2008) 1307–15‏.

DOI: 10.1016/j.addr.2008.03.016

Google Scholar

[2] G. Han, P. Ghosh, M. De and V. Rotello, Drug and Gene Delivery using Gold Nanoparticles. Nanobiotechnol. 3 (2007) 40-5‏.

DOI: 10.1007/s12030-007-0005-3

Google Scholar

[3] D. A. Stead, Current methodologies for the analysis of aminoglycosides. J. Chromatogr. B. Biomed. Sci. Appl. 747(2000) 69–93‏.

Google Scholar

[4] L. E. Bryan, S. K. Kowand and H. M. Van Den Elzen, Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis. Antimicrob. Agents. Chemother. 15(1979) 7- 13‏.

DOI: 10.1128/aac.15.1.7

Google Scholar

[5] T. P. Chaves, E. L. C. Clementino, D. C. Felismino, R. R. N. Alves, A. Vasconcellos, H. D. M. Coutinho et al. Antibiotic resistance modulation by natural products obtained from Nasutitermes corniger (Motschulsky, 1855) and its nest. Saudi. J. Bio. Sci. In press (2014).

DOI: 10.1016/j.sjbs.2014.12.005

Google Scholar

[6] G. L. Burygin, B. N. Khlebtsov, A. N. Shantrokha, L. A. Dykman, V. A. Bogatyrev and N. G. Khlebtsov, On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale. Res. Lett. 4(2009) 794–801‏.

DOI: 10.1007/s11671-009-9316-8

Google Scholar

[7] B. Saha, J. Bhattacharya, A. Mukherjee, A. K. Ghosh, C. R. Santra, A. K. Dasgupta, and P. Karmakar, In Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotic. Nanoscale. Res. Lett. 2(2007) 614-622‏.

DOI: 10.1007/s11671-007-9104-2

Google Scholar

[8] S. L. Best and P.J. Sadler, Gold Drugs: Mechanism of Action and Toxicity. Gold. Bull. 29(1996) 87-93‏.

DOI: 10.1007/bf03214741

Google Scholar

[9] K. J. Klabunde and R.M. Richards, Nanoscale Materials in Chemistry. 2nd ed. Wiley; 2009‏.

Google Scholar

[10] E.V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien and C. B. Murray, Structural diversity in binary nanoparticle super lattices. Nature. 439(2006) 55-59‏.

DOI: 10.1038/nature04414

Google Scholar

[11] B. Kumar, K. Smita, L. Cumbal and A. Debut, Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L. ) leaf extracts. Saudi. J. Biol. Sci. 21(2014) 605–609.

DOI: 10.1016/j.sjbs.2014.07.004

Google Scholar

[12] R. Vaidyanathan, K. Kalishwaralal, S. H. Gopalram and S. Gurunathan, Nanosilver-The burgeoning therapeutic molecule and its green synthesis. Biotechnol. Adv. 27(2009) 924–937‏.

DOI: 10.1016/j.biotechadv.2009.08.001

Google Scholar

[13] B. Nair and T. Pradeep, Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Cryst. Growth. Des. 2(2002) 293-298‏.

DOI: 10.1021/cg0255164

Google Scholar

[14] T. J. Beveridge and R. G. Murray, Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141(1980) 876-887‏.

DOI: 10.1128/jb.141.2.876-887.1980

Google Scholar

[15] G. Southam and T. J. Beveridge, The in vitro formation of placer gold by bacteria. Geochim. Cosmochim. Acta. 58(1994) 4527-4530.

DOI: 10.1016/0016-7037(94)90355-7

Google Scholar

[16] S. Honary, E. Gharaei-Fathabad, Z. Khorshidi Paji and M. Eslamifar, A novel biological synthesis of gold nanoparticle by enterobacteriaceae family. Trop. J. Pharm. Res. 11(2012) 887-891‏.

DOI: 10.4314/tjpr.v11i6.3

Google Scholar

[17] D. N. Correa-Llantén, S. A. Muñoz-Ibacache, M. E. Castro, P. A. Muñoz and J. M. Blamey, Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb. Cell. Fact. 12(2013).

DOI: 10.1186/1475-2859-12-75

Google Scholar

[18] A. K. Vala, Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ. Prog. Sustain. Energy. 34(2015) 194-197.

DOI: 10.1002/ep.11949

Google Scholar

[19] D. Mandal, M. E. Bolander, D. Mukhopadhyay, G. Sarkar and P. Mukherjee, The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69(2006) 485–492.

DOI: 10.1007/s00253-005-0179-3

Google Scholar

[20] K. Lewis, A. A. Salyers, H. W. Taber, R. G. Wax, Bacterial resistance to antimicrobials. 1st ed. Marcel Dekker, INC‏. (2002).

Google Scholar

[21] S. Yoshizawa, D. Fourmy and H. D. Puglisi, Structural origins of gentamicin antibiotic action. EMBO. J. 17(1998) 6437–6448‏.

DOI: 10.1093/emboj/17.22.6437

Google Scholar

[22] A. Bryskier, Antimicrobial agents (antibacterial and antifungals). 3rd ed. ASM Press‏. (2005).

Google Scholar

[23] L. Zhang, D. Pornpattananangkul, C. M. J. Hu and C. M. Huang, Development of Nanoparticles for Antimicrobial Drug Delivery. Curr. Med. Chem.; 17(2010) 585-594.

DOI: 10.2174/092986710790416290

Google Scholar

[24] S. Khademi, H. Motamedi, A. Akbarzadeh Khiavi and M. R. Mehrabi, Gold nanoparticle biosynthesis by E. coli and conjugation with streptomycin and evaluation of its antibacterial effect. Curr. Nano. Sci. 10(2014) 553-561‏.

DOI: 10.2174/1573413709666131203231344

Google Scholar

[25] J. M. Andrews, Determination of minimum inhibitory concentrations. J. Antimicrob. Therapy. 48(2001) 5- 16.

Google Scholar

[26] M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer and E. Stackebrandt, The prokaryotes a handbook of the biology of bacteria. 3rd ed. Springer‏. (2006).

DOI: 10.1007/0-387-30746-x

Google Scholar

[27] S. H. Sinha, L. Pan, P. Chanda and S. K. Sen, Nanoparticles fabrication using ambient biological resources. J. Appl. Biosci. 19(2009) 1113 –1130‏.

Google Scholar

[28] P. Mohanpuria, N. K. Rana and S. K. Yada, Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 10(2008) 507–517‏.

DOI: 10.1007/s11051-007-9275-x

Google Scholar

[29] V. K. Sharma, R. A. Yngard and Y. Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid. Interface. Sci. 145(2009) 83–96‏.

DOI: 10.1016/j.cis.2008.09.002

Google Scholar

[30] K. Prasad, A. K. Jha and A. R. Kulkarni, Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale. Res. Lett. 2(2007) 248–250‏.

DOI: 10.1007/s11671-007-9060-x

Google Scholar

[31] S. Minaeian, A. R. Shahverdi, A. S. Nohi and H. R. Shahverdi, Extracellular biosynthesis of silver nanoparticles by some bacteria. J. Sci. I. A. U. (JSIAU) 17(2008)1-4‏.

Google Scholar

[32] J. Xie, J. Y. Lee, D. I. Wang and Y. P. Ting, Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small; 3(2007) 672-682‏.

DOI: 10.1002/smll.200600612

Google Scholar

[33] S. K. Das and E. Marsili, A green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect. Rev. Environ. Sci. Biotechnol.; 9(2010) 199-204‏.

DOI: 10.1007/s11157-010-9188-5

Google Scholar

[34] M. E. Levison, J. L. Bran and K. Ries, Treatment of Anaerobic Bacterial Infections with Clindamycin-2-Phosphate. Antimicrob. Agents. Chemother. 5(1974) 276-280‏.

DOI: 10.1128/aac.5.3.276

Google Scholar