Enhanced Luminescence of L-Alanine Capped LaF3:Ce Nanoparticles Useful in Biological Labeling

Article Preview

Abstract:

Hexahedral nanocrystals of L-Alanine [CH3CH(NH2)COOH] doped LaF3:Ce (ALFC) of assorted sizes have been synthesized in deionized water using water soluble chlorides of lanthanides with subsequent microwave irradiation to reduce agglomeration. The average particle sizes obtained by XRD, SEM, and TEM have been 22nm, 37nm and 23nm respectively. The surface modification by functional groups of L-Alanine is observed in the FTIR and FT-RAMAN spectra and their decomposition is studied in TGA/DTA spectrum .The electron-phonon interaction of A1g phonon mode and fundamental Eg phonon mode have been observed in far infra-red region by FT-RAMAN spectra. The UV-Vis spectrum shows multiple absorption edges corresponding to energies at E1 = 5.11eV, E2 = 4.47eV, and E3=5.781eV which indicates the quantum dot nature of the nanocrystals and its application in optoelectronic devices. ALFC nanocrystals showed green color emission peak centered at 554 nm with their potential application in bio imaging and bio tagging.Keywords: nanostructures, fluorides, Transmission electron microscopy, Raman spectroscopy, Thermogravimetric analysis (TGA).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-92

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Luiz G. Jacobson, Courtney J. Kucera, Tiffany L. James, Kevin B. Sprinkle, Jeffrey R. Dimaio, Baris Kokuoz, Basak Yazgan- Kukouz, Timothy A. Devol, John Ballato. Materials, 3, 2053-2068 (2010).

DOI: 10.3390/ma3032053

Google Scholar

[2] Huaxiang Shen, Feng Wang, Xianping Fan, Minquan Wang, Journal of Experimental Nanoscience, Vol. 2, No. 4, 303–311 (2007).

Google Scholar

[3] Yang Wei, Fengqi Lu, Xinrong Zhang, Depu Chen, Materials Letters , 61 , 1337–1340, (2007).

Google Scholar

[4] Kyra Lunstroot, Linny Baeten, Peter Nockemann, Johan Martens, Pieter Verlooy, Xingpu Ye, Christiane Gorller-Walrand, Koen Binnemans, Kris Driesen,J. Phys. Chem. C, 113, 13532–13538, (2009).

DOI: 10.1021/jp9015118

Google Scholar

[5] Marie Aloshyna, Sri Sivakumar, Mahalingam Venkataramanan, Alexandre G. Brolo, and Frank C. J. M. van Veggel, , J. Phys. Chem. C, 111, 4047-4051, (2007).

DOI: 10.1021/jp067244b

Google Scholar

[6] Feng Wang, Wee Beng Tan, Yong Zhang, Xianping Fan, Minquan Wang, Nanotechnology , 17, R1-R13, (2006).

Google Scholar

[7] H. Sekiya ,C. Ida,H. Kubo,S. Kurosawa,K. Miuchi,T. Tanimori,K. Taniue,A. Yoshikawa,T. Yanagida,Y. Yokota,K. Fukuda,S. Ishizu,N. Kawaguchi,T. Suyama, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol 633, supplement 1, pages S36-S39, (2011).

DOI: 10.1016/j.nima.2010.06.114

Google Scholar

[8] Jan W. Stouwdam and Frank C. J. M. van Veggel, Nano Lett., Vol. 2, No. 7, (2002).

Google Scholar

[9] F. Evanics , P. R. Diamente , F. C. J. M. van Veggel , G. J. Stanisz ,R. S. Prosser, Chem. Mater, 18 (10), p.2499–2505, (2006).

DOI: 10.1021/cm052299w

Google Scholar

[10] Daqin Chen, Yunlong Yu, Ping Huang, Hang Lin, Zhifa Shan, Yuansheng Wang, Acta Materialia Volume 58, Issue 8, pages 3035-3041, (2010).

Google Scholar

[11] Jianshe Wang, Jin Hu, Daihua Tang, Xinhou Liu , Zhen Zhen, J. Mater. Chem, 17, 1597–1601, (2007).

Google Scholar

[12] Cong-Cong Mia, Zhen-huang Tiana, Bao-fu Hana, Chuan-bin Maob, Shu-kun Xua, J Alloys Compd. , 525, 154–158. ( 2012).

Google Scholar

[13] A.V. Safronikhin, G.V. Ehrlich, G.V. Lisichkin, Russian Journal of Chemistry, vol 81, No. 2, pp.177-181, (2011).

Google Scholar

[14] K. Riwotzki and M. Haase, J. Phys. Chem. B, 102 (50), p.10129–10135, (1998).

Google Scholar

[15] M. Haase , K. Riwotzki, H. Meyssamy, A. Kornowski , Journal of Alloys and Compounds 303–304 , 191–197, (2000).

DOI: 10.1016/s0925-8388(00)00628-9

Google Scholar

[16] Gunnar Buhler , Clauss Feldmann, Angew Chem Int Ed. 45, 4864-4867, (2006).

Google Scholar

[17] S.G. Gaurkhede M.M. Khandpekar, S.P. Pati, A.T. Singh, ISRN Material Science, 763048, (2012).

Google Scholar

[18] George M. Whitesides , Bartosz Grzybowski, 29, Vol 295, Science, ( 2002).

Google Scholar

[19] W.T. Carnall, G.L. Goodman , K. Rajnak, R.S. Rana, A.J. Chem. Phy. 90, 3443 (1989).

Google Scholar

[20] Tian Zhanga , Hai Guoa, b, YanMin Qiaoa , Journal of Luminescence , 129 , 861–866, (2009).

Google Scholar

[21] Karin Schmalzl,  Gernot Deinzer, Michael Malorny,  Dieter Strauch, High Performance Computing in Science and Engineering, pp.319-328, (2005).

DOI: 10.1007/3-540-26657-7_29

Google Scholar

[22] F. Wang, Y. Zhang, X. Fan, M. Wang, Nanotechnology, 17, 1527-1523, (2006).

Google Scholar

[23] J. Wang, I. Hu, Z. Zhen, Journal of Material Chemistry, 17, 1597-1601, (2007).

Google Scholar

[24] D.N. Vylegzhanin, A.A. Kaminskii, Soviet Physics JEPT, Volume 35, Number 2, (1972).

Google Scholar

[25] Xiaoting Zhang, Tomokatsu Hayakawa and Masayuki Nogami, Intensity IOP Conf. Series: Materials Science and Engineering, 1, 012021, (2009).

Google Scholar

[26] A.P. Alivisatos, Science, New Series, Vol. 271, No. 5251, pp.933-937, (1996).

Google Scholar

[27] Marcel Bruchez Jr, Mario Moronne, Peter Ginn, Shimon Weiss, A. Paul Alivisatos, Science, Vol 281, (1998).

Google Scholar

[28] K. Binnemans, C. Gorller-Warlrand, Chemical Physics Letters, 235 , 163-174, (1995).

Google Scholar

[29] P.S. Peijzel, A. Meijerink, R.T. Wegh, M.F. Reid, G.W. Burdick, Journal of Solid State Chemistry, 178, 448-453 (2005).

DOI: 10.1016/j.jssc.2004.07.046

Google Scholar

[30] Tatiana Anfimova, Qingfeng Li, Jens Oluf Jensen, Niels J. Bjerrum, Int. J. Electrochem. Sci., 9 2285 – 2300, (2014).

Google Scholar

[31] M.F.P. da Silva, J.R. Matos, P.C. Isolani, Journal of Thermal Analysis and Calorimetry, Vol 94, 305-311, (2008).

Google Scholar