Chitosan Nanocarriers Loading Anti-Tumor Drugs

Article Preview

Abstract:

Chitosan is a kind of natural polymer commonly applied for nanomaterials, which is affluent in nature with favorable biodegradability and biocompatibility and free of toxicity or odor. In clinic it can be used as a drug carrier for the treatment of cancer, and also it is a kind of new pharmaceutical excipient. To prepare chitosan nanomaterial, various method are used, such as ionic crosslinking, covalent crosslinking, precipitation, free radical polymerization, reverse micelle, spray drying, and self-assembly. Furthermore, plenty of anti-tumor drugs, including adriamycin, epirubicin, taxol, 5-fluorouracil, norcantharidin, folic acid, and so on, are also attempted to load on these chitosan nanocarriers. In addition, the mechanism for those nanocarriers carrying anti-tumor drugs acting on tumor cell were explored, and the formulation mainly include electric charge adhesion effect, suppressing the proliferation of tumor cells, adjusting or enhancing immune ability of the body and inducing apoptosis. This paper compared the characteristics of different preparation methods on chitosan as a nanodrug carrier, summarized the types of packaged drugs, analyzed the mechanism of the chitosan as nanodrug carriers. It can provide valuable reference for researchers' further work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-127

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Dufes, A.G. Schatzlein, L. Tetley, A.I. Gray, D.G. Watson, J.C. Olivier, W. Couet, and I.F. Uchegbu, Niosomes and polymeric chitosan based vesicles bearing transferring and glucose ligands for drug targeting, Pharm Res, 17(2000)1250-1258.

DOI: 10.1023/b:pham.0000012156.65125.01

Google Scholar

[2] D.L. Nettles, S.H. Elder, and J.A. Gilbert, Potential use of chitosan as a cell scaffold material for cartilage tissue engineering, Tissue Eng, 8(2002) 1009-1016.

DOI: 10.1089/107632702320934100

Google Scholar

[3] X.Y. Cao, J.T. Liu, and M.Z. Yi, The research progress of antitumor drug carrier, Orthopaedic Biomechanics Materials and Clinical, 3(2006) 32-34.

Google Scholar

[4] N.V. Majeti, and K. Ravi, A review of chitin and chitosan applications, React Funct Polym, 46(2000)1-27.

Google Scholar

[5] J.Q. Qian, Y. Tang, and Z.X. Tang, Research on Preparation of Chitosan Nanoparticles from Triglycerides, Amina Acids & Biotic Resources, 30(2008)16-20.

Google Scholar

[6] S. Mansouri, Y. Cuie, F. Winnik, Q. Shi, P. Lavigne, M. Benderdour, E. Beaumont, J.C. Fernandes, Characterization of folate-chitosan-DNA nanoparticles for gene therapy , Biomaterials, 27(2006) 2060-(2065).

DOI: 10.1016/j.biomaterials.2005.09.020

Google Scholar

[7] Y.Q. Xiao, C. Wang, and D.F. Yu, Study on Polyester Fabric Finishing with Ionic Liquid-Chitosan, Synth Fiber China, 41(2012) 21-24.

Google Scholar

[8] F. Qian, F. Cui, J. Ding, T. Cui, and C.H. Yin, Chitosan graft copolymer nano carriers for oral protein drug delivery: preparation and characterization, Biomacromolecules, 7(2006)2722-2727.

DOI: 10.1021/bm060065f

Google Scholar

[9] T.D. Jiang, Chitosan, Bei Jing: Chemical Industry Press, (2001)8-14.

Google Scholar

[10] Y. Kato, H. Onishi, and Y. Machida, Application of chitin and chitosan derivatives in the pharmaceutical field, Curr Pharm Biotechno, 4(2003)303-309.

DOI: 10.2174/1389201033489748

Google Scholar

[11] V. Dodane, and V.D. Vilivalam, Pharmaceutical applications of chitosan, Pharm Sci Tech Today, 1(1998) 246-253.

DOI: 10.1016/s1461-5347(98)00059-5

Google Scholar

[12] C. Qin, Y. Du, L. Xiao, Z. Li, and X.H. Gao, Enzymic preparation of water-soluble chitosan and their antitumor activity, Int J Biol Macromol, 31(2002)111-117.

DOI: 10.1016/s0141-8130(02)00064-8

Google Scholar

[13] S. Roller, N. Covill, The antifungal properties of chitosan in laboratory media and apple juice, Int J Food Microbiol, 47(1999) 67-77.

DOI: 10.1016/s0168-1605(99)00006-9

Google Scholar

[14] S.A. Agnihotri, N.N. Mallikarjuna, T.M. Aminabbhavi, Recent advances on chitosan-based micro and nanoparticles in drug delivery, J Control Rel, 100(2004)5-28.

Google Scholar

[15] Z. Li, H.R. Ramay, K.D. Hauch, D. Xiao, M. Zhang, Chitosan-alginate hybrid scaffolds for bone tissue engineering, Biomaterials , 26(2005) 3919-3928.

DOI: 10.1016/j.biomaterials.2004.09.062

Google Scholar

[16] Y. Cui. Modification of polysaccharide and study of sensitivity of polysaccharide hydrogel, Jilin: Changchun University of Science and Technology, (2013)1-127.

Google Scholar

[17] Z.X. Zhuang, Z.Y. Lin, F.Q. Lu, Z.S. Cao, Y. Long, and Y.T. Li, Study of Chitosan Membrane on Biodegradation and tissue Regeneration, Chinese Journal of Dental Materials and Devices, 6(1997)178-180, 213.

Google Scholar

[18] N. Minoura, T. Koyano, N. Koshizaki, H. Umehara, M. Nagura, K-i. Kobayashi, Preparation, properties, and cell attachment/growth behavior of PVA/chitosan-blended hydrogels, Materials Science and Engineering: C, 6(1998)275-280.

DOI: 10.1016/s0928-4931(98)00062-9

Google Scholar

[19] M.X. Jin, and Q.H. Hu, Characterization and application in bioadhesive drug delivery system of chitosan, Centr South Pharm, 6(2008) 324–327.

Google Scholar

[20] Z. Li, X.F. Liu, D.Z. Yang, Y.L. Guan, and K.D. Yao, Progress of Study on Degradation of Chitosan, Chemical Industry and Engineering Progress, (2000)20-23.

Google Scholar

[21] K.L. Douglas, C.A. Piccirillo, and M. Tabrizian, Effects of alginate inclusion on the vector properties of chitosan-based nano carriers, J Control Release, 115(2006)354-361.

DOI: 10.1016/j.jconrel.2006.08.021

Google Scholar

[22] Y.J. Song, Preparation, Exosyndrome and Application of Nano Drug Carrier Targeted to Brain Based on Macromolecular Polymer, Jiang Su: China University of Mining and Technology, (2012) 1-127.

Google Scholar

[23] A.R. Dudhani, S.L. Kosaraju, Bioadhesive c Carbohydr Polym hitosan nano carriers: preparation and characterization, Carbohydr Polym, 81(2010)243–251.

DOI: 10.1016/j.carbpol.2010.02.026

Google Scholar

[24] Y.M. Xu, W . Zhou, L. Yin, and H. Zheng, Preparation and bioadhesion of micro-gel of thiolated carboxymethyl chitosan, ournal of Clinical Rehabilitative Tissue Engineering Research, 13(2009)5645-5648.

Google Scholar

[25] F.Y. Ding, Z. Nie, and H.B. Deng, Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/ alkynyl chitosan, Carbohydrate polymers , 98(2013)1547-1552.

DOI: 10.1016/j.carbpol.2013.07.042

Google Scholar

[26] A.Y. Mansilla, L. Albertengo, M.S. Rodríguez, A. Debbaudt, A. Zúñiga, Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. Tomato DC3000, Microbiology and Biotechnology, 97(2013).

DOI: 10.1007/s00253-013-4993-8

Google Scholar

[27] A.L. Liao, X.P. Wu, S.T. Yi, and C.J. Deng, Study on Antimicrobial Activity of Chitosan against Staphylococcus aureus, Food and Nutrition in China, 17(2011)40-43.

Google Scholar

[28] Y.J. Xie, X.F. Liu, and Q. Chen, Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity, Carbohydrate polymers, 69(2007) 142-147.

DOI: 10.1016/j.carbpol.2006.09.010

Google Scholar

[29] C.Q. Qin, Q. Xiao, H.R. Li, M. Fang, Y. Liu, X.Y. Chen, and Q. Li, Calorimetric studies of the action of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride on the growth of microorganisms, International journal of biological macromolecules. 34(2004).

DOI: 10.1016/j.ijbiomac.2004.03.009

Google Scholar

[30] C.Q. Qin, H.R. Li, Q. Xiao, Y. Liu, J.C. Zhu, and Y.M. Du, Water-solubility of chitosan and its antimicrobial activity, Carbohydrate polymers , 63(2006)367-374.

DOI: 10.1016/j.carbpol.2005.09.023

Google Scholar

[31] J.M. Huang, L.M. Wu, R.Y. Chen. Study on the regulation of chitin and chitosan to mice immune, Guangdong health and epidemic prevention, 25(1999) 4-6.

Google Scholar

[32] P.G. Seferian, M. L.Martinez, Imune stimulating activity of two new chitosan containing adjuvant formulations, Vaccine, 19(2001) 661-668.

DOI: 10.1016/s0264-410x(00)00248-6

Google Scholar

[33] T.J. Wei, D.G. Dong, L. Qiu, L.F. Yu, and X.D. Chen, Preparation of Chitosan Nanoparticles by Ionic Cross-Linking Method, Journal of Anhui Agri Sci, 40(2012)2885-2886, 2889.

Google Scholar

[34] Z.H. Xing, and G.Z. Fang. Study on the Preparation of Folate-Chitosan microspheres by Ionic crosslinking, Heilongjiang Medicine Journal, 24(2011) 915-917.

Google Scholar

[35] X.Y. Jiang, C.S. Zhou, J.S. Zhang, and J.Y. Yang, Study on the preparation of nanoparticles using sodium tripolyphosphate as cross-linking agent, China Journal of Modern Medicine , 13(2003)69-71.

Google Scholar

[36] M. Amidi, E. Mastrobattista, W. Jiskoot, and W.E. Hennink, Chitosan-based delivery systems for protein therapeutics and antigens, Adv Drug Deliv Rev, 62(2010) 59-82.

DOI: 10.1016/j.addr.2009.11.009

Google Scholar

[37] P.H. Yang, M. Liu, and J.Y. Zhang, Preparation and character of 5-fluorouracil/chitosan drug-loaded nanospheres, Chemical Research and Application, 21(2009)42-46.

Google Scholar

[38] F. L. Mi, H.W. Sung, S.S. Shyu, C.C. Su, and C.K. Peng, Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads, Polymer, 44(2003)6521-6530.

DOI: 10.1016/s0032-3861(03)00620-7

Google Scholar

[39] A.H. Krauland, and M.J. Alonso, Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system, Int J Pharm, 340(2007)134-142.

DOI: 10.1016/j.ijpharm.2007.03.005

Google Scholar

[40] M. L Tsai, S.W. Bai, and R.H. Chen, Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan-sodium tripolyphosphate nanoparticle, Carbohyd Polym, 71(2008)448-457.

DOI: 10.1016/j.carbpol.2007.06.015

Google Scholar

[41] M. Goldberg, R. Langer, and X. Jia, Nanostructured materials for applications in drug delivery and tissue engineering, J Biomater Sci Polym Ed 18(2007) 241-268.

Google Scholar

[42] M. Bodnar, J.F. Hartmann, and J. Borbely, Preparation and characterization of chitosan-based nano carriers, Biomacromolecules, 6(2005)2521-2527.

DOI: 10.1021/bm0502258

Google Scholar

[43] Y. Ohya,M. Shiratani,and H. Kobayashi, Release behavior of 5-fluorouracil from chitosan gel nanosphere immobilizing 5-fluorouracil coated with pdysaccharides and their cell specific cytotoxicity, Pure Apple Chem, 66(1994)629-642.

DOI: 10.1080/10601329408545334

Google Scholar

[44] K.A. Janes, P. Calvo, and M.J. Alonso, Polysaccharide colloidal particles as delivery systems for macromolecule, Adv Drug Deliver Rev, 47(2001) 83-97.

DOI: 10.1016/s0169-409x(00)00123-x

Google Scholar

[45] Y.K. Hao, and X.D. Yang, Progress of Study on Chitosan Loading Drugs, Chin Pharm J, 40(2005)1292-1295.

Google Scholar

[46] A. Berthold, K. Cremer, and J. Kreuter, Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs, J Cont Rel, 39(1996)17-25.

DOI: 10.1016/0168-3659(95)00129-8

Google Scholar

[47] X.X. Tian, and M.J. Groves, Formulation and biological activity of antineoplastic proteoglycans derived from Mycobacterium vaccae in chitosan nano carriers, J Pharm Pharmacol, 51(1999) 151-157.

DOI: 10.1211/0022357991772268

Google Scholar

[48] C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier, Plug-in spectrometry with optical fbers as a novel analytical tool for nano carriers technology: application to the investigation of the emulsion polymerization of the alkylcyanoacrylate, J Nanopart Res, 5(2003).

Google Scholar

[49] I. Bravo-Osuna, C. Vauthier, A. Farabollini, G.F. Palmieri, and G. Ponchel, Mucoadhesion mechanism of chitosan and thiolated chitosan-poly (isobutyl cyanoacrylate) core-shell nano carriers, Biomaterials, 28(2007) 2233–2243.

DOI: 10.1016/j.biomaterials.2007.01.005

Google Scholar

[50] M.R. de Moura, F.A. Aouada, and L.H.C. Mattoso, Preparation of chitosan nano carriers using methacrylic acid, J Colloid Interface Sci, 321(2008)477–483.

DOI: 10.1016/j.jcis.2008.02.006

Google Scholar

[51] S. Mitra, U. Gaur, P.C. Ghosh, A.N. Maitra, Tumor targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier, J Control Release, 74(2001)317-323.

DOI: 10.1016/s0168-3659(01)00342-x

Google Scholar

[52] T. Banerjee, S. Mitra, A, Kumar Singh, R. Kumar Sharma, and A. Maitra, Preparation characterization and biodistribution of ultrafine chitosan nanoparticles, Int J Pharm. 243(2002) 93-105.

DOI: 10.1016/s0378-5173(02)00267-3

Google Scholar

[53] H.Y. Huang, Y.T. Shieh, C.M. Shih, and Y.K. Twu, Magnetic chitosan/iron (II, III) oxide nano carriers prepared by spray-drying, Carbohydr Polym, 81(2010) 906–910.

DOI: 10.1016/j.carbpol.2010.04.003

Google Scholar

[54] F.L. Mi, Y.C. Tna, H.F. Liang, and H.W. Sung, In vivo biocompatibility and degradability of a novel injecable-chiosan-based implant, Biomaterials, 23(2002)181-191.

DOI: 10.1016/s0142-9612(01)00094-1

Google Scholar

[55] A. Grenha, C. Remuñán-López, E. L. Carvalho, and B. Seijo, Microspheres containing lipid / chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins, Euro J Pharm Biopharm, 69(2008)83-93.

DOI: 10.1016/j.ejpb.2007.10.017

Google Scholar

[56] E. Gavini, G. Rassu, C. Muzzarelli, M. Cossu, and P. Giunchedi, Spray-dried microspheres based on methylpyrrolidinone chitosan as new carrier for nasal administration of metoclopramide, Euro J Pharm Biopharm 68(2008)245-252.

DOI: 10.1016/j.ejpb.2007.05.002

Google Scholar

[57] J.H. Kim, Y.S. Kim, K. Park, S. Lee, H.Y. Nam, K.H. Min, H.G. Jo, J.H. Park, K. Choi, S.Y. Jeong, R.W. Park, I.S. Kim, K. Kim, I.C. Kwon, Antitumor efficacy of cisplatin-loaded glycol chitosan nano carriers in tumor-bearing mice, J Control Release ,127(2008).

DOI: 10.1016/j.jconrel.2007.12.014

Google Scholar

[58] M.R. Huo, J.P. Zhou, and Y. Zhang, Synthesis and characterization of novel amphiphilic chitosan derivatives and its solubilizing abilities for water insoluble drugs, Chem J Chinese U, 28(2007)1995–(1999).

Google Scholar

[59] A.E. Sirica, R.J. Woodman, Selective aggregation of L1210 leukemia cells by the polycation chitosan, J Natl Cancer Inst, 47(1971) 377-388.

Google Scholar

[60] J.H. Park, G. Saravanakumar, K. Kim, and I.C. Kwon, Targeted delivery of low molecular drugs using chitosan and its derivatives, Adv Drug Deliv Rev, 62(2010)28–41.

DOI: 10.1016/j.addr.2009.10.003

Google Scholar

[61] Y. Liu, and H. Liu, Effect of chito oligosaccharide on the growth of human carcinoma of colon LoVo cell line, Acta Academiae Medicinae XuZhou, 22(2002)148-151.

Google Scholar

[62] J.B. Shen, J.L. Lin, and S.F. Zhang, Study on the effect of Chitosan to cervical cancer HeLa, Acta Anatomica Sinica, 28(1997)421-423.

Google Scholar

[63] S.H. Zhou, Y. Hong, G.J. Fang, Y.Y. Jiang, Y.Q. Bi, L.H. Yang, and Y. Chen, Preparation, characterization and anticancer effect of chitosan nanoparticles, Chinese Journal of Tissue Engineering Research, 11(2007)9688-9691.

Google Scholar

[64] D.Y. Lee, I.S. Choi, J.H. Han, and H.S. Yoo, Chitosan and D-glucosamine induce expression of Th1 cytokine genes in porcine spleen cells, J Vet Med Sci ,64(2002)645-648.

DOI: 10.1292/jvms.64.645

Google Scholar

[65] Z. Yu, L. Zhao, and H. Ke, Potential role of nuclear factor-kappa B in the induction of nitric oxide and tumor necrosis factor-alpha by oligo chitosan in macrophages, Int Immunopharmacol, 4(2004) 193-200.

DOI: 10.1016/j.intimp.2003.12.001

Google Scholar

[66] Y. Maeda, and Y. Kimura, Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice, J Nutr, 134(2004)945-950.

DOI: 10.1093/jn/134.4.945

Google Scholar

[67] S.J. Lee, P. Kyeongsoon, Y.K. Oh, S.H. Kwon, S. Her, I.S. Kim, K. Choi, S.J. Lee, H. Kim, S.G. Lee, K. Kim, and I.C. Kwon, Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice, Biomaterials, 30(2009).

DOI: 10.1016/j.biomaterials.2009.01.058

Google Scholar

[68] K.A. Janes, M.P. Fresneau, A. Marazrela, A. Fabra, and M.J. Alonso, Chitosan nanoparticles as delivery systems for doxorubicin, J Control Release, 73(2001)255-267.

DOI: 10.1016/s0168-3659(01)00294-2

Google Scholar

[69] M. Liu, J.Y. Zhang, P.H. Yang, and J.Y. Cai, Probing the inhibitory effect of 5-FuPCs drug-loaded nanospheres to human hepatoma cells with atomic force microscopy, Journal of Chinese Electron Microscopy Society, 28(2009)146-148.

Google Scholar

[70] M. Hasegawa, K. Yagi, S. Iwakawa, and M. Hirai, Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells, Jpn J Cancer Res, 92(2001)459-466.

DOI: 10.1111/j.1349-7006.2001.tb01116.x

Google Scholar

[71] H.O. Pae, W.G. Seo, N.Y. Kim, G.S. Oh, G.E. Kim, Y.H. Kim, H.J. Kwak, Y.G. Yun, C.D. Jun, and H.T. Chung, Induction of granulocytic differentiation in acute promyelocytic leukemia cells (HL-60) by water-soluble chitosan oligomer, Leuk Res, 25(2001).

DOI: 10.1016/s0145-2126(00)00138-7

Google Scholar

[72] D. Kumar, R.S. Tomar, S.K. Deolia, R. Srivastava, M. Mitra, and S. Tyagi, Isolation and characterization of degradation impurities in epirubicin hydrochloride injection, J Chromatogr B Analyt Technol Biomed Life Sci. 869(2008)45-53.

DOI: 10.1016/j.jchromb.2008.05.014

Google Scholar

[73] D.R. Kalaria, G. Sharma, V. Beniwal, M.N. Ravi Kumar, Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats, Pharm Res, 26(2009)492-501.

DOI: 10.1007/s11095-008-9763-4

Google Scholar

[74] J. Zhang, Self-assembled Nanoparticles Based on Oleoyl-chitosan as Antitumor Drug Carriers, ShanDong:Ocean University of China, (2010)1-132.

Google Scholar

[75] H.L. Chen, The study of PLGA nanospheres surface modified with biotinylated chitosan as the antitumor drug delivery carriers, BeiJing: Peking Union Medical College, (2009)1-108.

Google Scholar

[76] Y.Q. Ling, Characteristics of chitosan antitumor sustained-release drugs, Chinese Journal of Tissue Engineering Research, 17(2013)1489-1496.

Google Scholar

[77] L.W. Guo, S.M. Wang, X.G. Hu, M.M. Cao, and J.R. Zhang, Study for preparation and anticancer activity of the stealth epirubicin chitosan nanoparticles, Basic& Clinical Medicine ,J.H. Kim, Y.S. Kim, S. Kim, J.H. Park, K. Kim, K. Choi, H. Chung, S.Y. Jeong, R.W. Park, I.S. Kim, and I.C. Kwon, Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel, J CONTROL RELEASE, 111(2006).

DOI: 10.1016/j.jconrel.2005.12.013

Google Scholar

[78] J.H. Kim, Y.S. Kim, S. Kim, J.H. Park, K. Kim, K. Choi, H. Chung, S.Y. Jeong, R.W. Park, I.S. Kim, and I.C. Kwon, Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel, J Controll Release, 111(2006)228-234.

DOI: 10.1016/j.jconrel.2005.12.013

Google Scholar

[79] Z.J. Liu, W.G. Zhang, J.G. Yu, G. Han, and H.G. Dai, Preparation, characterization and drug release property of paclitaxel nanoparticles, J Control Release, 13(2009)493-495.

Google Scholar

[80] Y.L. Li, and W.F. Xu, The research progress of oral fluorouracil class anticancer drugs, Journal of Clinical Rehabilitative Tissue Engineering Research, 22(2001)323-326.

Google Scholar

[81] Y.Y. Wang, The study of antitumor drug (5-fluorouracil) control-release, Pharmaceutical industry: synthetic medicine. Biochemical drugs. Preparation booklet, (2010)1-40.

Google Scholar

[82] J.Y. Zhang Preparation and characterization of 5-Fluorouracil-loaded Chitosan nanoparticles, JiLin: Northeast Normal University, (2005)1-75.

Google Scholar

[83] Q. Wang, l. Zhang, W. Hu, Z.H. Hu, and X.N. Zhang, Preparation and in Vitro Antineoplastic Activity of NorcantharidiN-Associated Galactosylated Chitosan Nanoparticles, Guangdong: Ji'nan University, 44(2009)913-919.

Google Scholar

[84] C.C. Kuang, W. He, S.D. Luo, and J.C. Song, Study on the distribution and liver targeting of norcantharidin nanoparticles in mice, Chin Pharm J, 25(2005)527-530.

Google Scholar

[85] S.D. Weitman, R.H. Lark, L.R. Coney, D.W. Fort, V. Frasca, V.R. Jr. Zurawski, and B.A. Kamen, Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues, Chin Hosp Pharm J. 52(1992)3396-3401.

Google Scholar

[86] G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, and M. Boiocchi, Overexpression of folate binding protein in ovarian cancers, Cancer Res. 74(1997)193-198.

DOI: 10.1002/(sici)1097-0215(19970422)74:2<193::aid-ijc10>3.0.co;2-f

Google Scholar

[87] J. Sudimack, and R.J. Lee, Targeted drug delivery via the folate receptor, Int J Cancer. (2000)147-162.

DOI: 10.1016/s0169-409x(99)00062-9

Google Scholar

[88] J.A. Reddy, and P.S. Low, Folate-mediated targeting of therapeutic and imaging agents to cancers, Adv Drug Deliv Rev. 15(1998)587-627.

Google Scholar

[89] S. Liu, Study on the Preparation and Anti-Tumor Effect of Folate-conjugated Chitosan Nanoparticles, Crit Rev Ther Drug Carrier Syst, (2006)1-49.

Google Scholar

[90] J.L. Gong, S.M. Wang, X.G. Hu, M.M. Cao, and J.R. Zhang, Synthesis and characterization of folic acid-conjugated chitosan nanoparticles as a tumor-targeted drug carrier, HuBei: Huazhong University of Science and Technology, 28(2008)2183-2186.

Google Scholar