Hierarchical Nanostructured ZnO-CuO Nanocomposite and its Photocatalytic Activity

Article Preview

Abstract:

Metal oxide nanocomposite (ZnO-CuO) was successfully synthesized by one step homogeneous coprecipitation method and further characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), X-ray diffraction analysis (XRD) and UV-visible diffuse reflectance spectra. XRD analysis exhibited presence of pure copper oxide and zinc oxide within the nanocomposite. SEM analysis indicated that the ZnO-CuO nanocomposite was consisted of flower shaped ZnO along with leaf shaped CuO. Photocatalytic activity of nanocomposite was evaluated in terms of degradation of methylene blue (MB) dye solution under ultra-violet radiation. Results showed that the photocatalytic efficiency of ZnO-CuO nanocomposite was higher than its individual pure oxides (ZnO or CuO).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Singh, V. C. Srivastava, T. K. Mandal, I. D. Mall, Synthesis of different crystallographic Al2O3 nanomaterials from solid waste for application in dye degradation, RSC Adv. 4 (2014) 50801-50810.

DOI: 10.1039/c4ra08842e

Google Scholar

[2] V. Anand, V. C. Srivastava. Zinc oxide nanoparticles synthesis by electrochemical method: Optimization of parameters for maximization of productivity and characterization. J. Alloys Comp. 636 (2015) 288–292.

DOI: 10.1016/j.jallcom.2015.02.189

Google Scholar

[3] S. Das, V. C. Srivastava, Copper succinate nanoparticles synthesis by electrochemical method: Effect of pH on structural and textural properties. Mater. Lett. 150 (2015) 130–134.

DOI: 10.1016/j.matlet.2015.03.018

Google Scholar

[4] F. Liu, J. He and L. Han, Study on PVA/Fe2O3 nanocomposites fabricated by traditional and bubble electrospinnings, Adv. Sci. Lett. 10 (2012) 615-617(3).

DOI: 10.1166/asl.2012.3356

Google Scholar

[5] C-H. He, X-W. Li, P. Liu and Y. Li, Bubbfil Spinning for Fabrication of PVA Nanofibers, Therm. Sci. 19 (2015) 743-746.

DOI: 10.2298/tsci150413061h

Google Scholar

[6] R. Saravanan, S. Karthikeyan, V. K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of a textile dye on visible light illumination, Mat. Sci. Eng. C 33 (2013) 91–98.

DOI: 10.1016/j.msec.2012.08.011

Google Scholar

[7] G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh, K. A. Gray, Role of surface/interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO TiO2 Nanocomposites, J. Phys. Chem. C 112 (2008) 19040–44.

DOI: 10.1021/jp8068392

Google Scholar

[8] Y. He, Z. Wu, L. Fu, C. Li, Y. Miao, L. Cao, H. Fan, B. Zou, Photochromism and size effect of WO3 and WO3 –TiO2 aquous sol, Chem. Mater. 15 (2003) 4039-45.

DOI: 10.1021/cm034116g

Google Scholar

[9] G. Marci, V. Augugliaro, M. J. L. Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. J. D. Tilley, A. M. Venezia, Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime, J. Phys. Chem. B 105 (2001).

DOI: 10.1021/jp003173j

Google Scholar

[10] W. Cun, Z. Jincai, W. Xinming, M. Bixian, S. Guoying, P. P. An, F. Jiamo, Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts, Appl. Catal. B 39 (2002) 269–79.

DOI: 10.1016/s0926-3373(02)00115-7

Google Scholar

[11] J. Bandara, S. S. Kuruppu, U. W. Pradeep, The promoting effect of MgO layer in sensitized photodegradation of colorants on TiO2/MgO composite oxide, Colloids Surf. A 276 (2006) 197–202.

DOI: 10.1016/j.colsurfa.2005.10.059

Google Scholar

[12] L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity, Inorg. Chem. 48 (2009)1819–1825.

DOI: 10.1021/ic802293p

Google Scholar

[13] S. T. Jun, G. M. Choi, Composition dependence of the electrical conductivity of ZnO(n)-CuO(p) ceramic composite, J. Am. Ceram. Soc. 81 (1998) 695–699.

DOI: 10.1111/j.1151-2916.1998.tb02391.x

Google Scholar

[14] D. Zhang, Enhanced photocatalytic activity for titanium dioxide by co-modification with copper and iron, Transition Met. Chem. 35 (2010) 933–938.

DOI: 10.1007/s11243-010-9414-6

Google Scholar

[15] R. C. Wang, H. Y. Lin, ZnO-CuO core-shell nanorods and CuO-nanoparticle-ZnO-nanorod integrated structures, Appl. Phys. A 95 (2009) 813–818.

DOI: 10.1007/s00339-009-5079-4

Google Scholar

[16] A. Zaoui, M. Ferhat, R. Ahuja, Magnetic properties of (ZnO)1/(CuO)1(001) superlattice, Appl. Phys. Lett. 94 (2009) 102102.

DOI: 10.1063/1.3095811

Google Scholar

[17] C. C. Tseng, Y. H. Chou, C. M. Liu, Y. M. Liu, M. D. Ger, Y. Y. Shu, Microwave-assisted hydrothermal synthesis of zinc oxide particles starting from chloride precursor, Mater. Res. Bull. 47 (2012) 96–100.

DOI: 10.1016/j.materresbull.2011.09.027

Google Scholar

[18] V. Anand, Harshavardhan, V. C. Srivastava, Synthesis and characterization of copper nanoparticles by electrochemical method: effect of pH. J. Nano Res. 31 (2015) 81-92.

DOI: 10.4028/www.scientific.net/jnanor.31.81

Google Scholar

[19] J. Gajendiran, V. Rajendran, Synthesis and characterization of coupled semiconductor metal oxide (ZnO/CuO) nanocomposite, Materials Lett. 116 (2014) 311–313.

DOI: 10.1016/j.matlet.2013.11.063

Google Scholar

[20] J. Bandara, U. W. Pradeep, R. G. S. J. Bandara, The role of n-p junction electrodes in minimizing the charge recombination and enhancement of photocurrent and photovoltage in dye sensitized solar cells, J. Photochem. Photoboil. A Chem. 170 (2005).

DOI: 10.1016/j.jphotochem.2004.08.023

Google Scholar

[21] Z. L. Jin, X. J. Zhang, Y. X. Li, S. B. Li, G. X. Lu, 5. 1% apparent quantum efficiency for stable hydrogen generation over eosinsensitized CuO/TiO2 photocatalyst under visible light irradiation, Catal. Comm. 8 (2007) 1267–1273.

DOI: 10.1016/j.catcom.2006.11.019

Google Scholar

[22] B. Y. Zhu, C. H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, J.T. -L. Thong, Co-synthesis of ZnO–CuO nanostructures by directly heating brass in air, Adv. Funct. Mater. 16 (2006) 2415–2422.

DOI: 10.1002/adfm.200600251

Google Scholar

[23] G. N. S. Vijayakumar, S. Devashanka, M. Rathnakumari, P. Suresh Kumar, Synthesis of electrospun ZnO/CuO nanocomposite fibers and their dielectric and non-linear optic studies, J. Alloys Comp. 507 (2010) 225–229.

DOI: 10.1016/j.jallcom.2010.07.161

Google Scholar

[24] R. Udayabhaskar, B. Karthikeyan, Optical and phonon properties of ZnO: CuO mixed nanocomposite, J. Appl. Phys. 115 (2014) 154303-154303-7.

Google Scholar

[25] B. Li, Y. Wang, Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite, Superlattices Microstructures 47 (2010) 615-623.

DOI: 10.1016/j.spmi.2010.02.005

Google Scholar

[26] M. Srivastava, A. K. Ojha, S. Chaubey, P. K. Sharma, A. C. Pandey, Influence of calcinations temperature on physical properties of the nanocomposites containing spinel and CuO phases, J. Alloys Comp. 494 (2010) 275–284.

DOI: 10.1016/j.jallcom.2010.01.008

Google Scholar

[27] P. R. Potti, V. C. Srivastava, Effect of dopants on ZnO mediated photocatalysis of dye bearing waste water: A review, Mater Sci. Forum 757 (2013) 165-174.

DOI: 10.4028/www.scientific.net/msf.757.165

Google Scholar

[28] P. Sathishkumar, R. Sweena, J. J. Wu, S. Anandan, Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution, Chem. Eng. J. 171 (2011) 136–140.

DOI: 10.1016/j.cej.2011.03.074

Google Scholar

[29] S. H. Aliyu, H. A. Abdullah, Z. Abbas, Solid state characterization of Cu-ZnO nanocomposite synthesised via micro-wave irradiation, The Int. J. Eng. Sci. 3 (2014) 47-53.

Google Scholar

[30] F. Lu, W. Cai and Y. Zhang, ZnO Hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance, Adv. Funct. Mater. 18 (2008)1047-1056.

DOI: 10.1002/adfm.200700973

Google Scholar

[31] M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb and S. Ogale, Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties, J Mater. Chem. 22 (2012) 17055-17062.

DOI: 10.1039/c2jm32660d

Google Scholar

[32] T. Chang, Z. Li, G. Yun, Y. Jia and H. Yang, Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method, Nano-Micro Lett. 5 (2013) 163-168.

DOI: 10.1007/bf03353746

Google Scholar