[1]
S. Singh, V. C. Srivastava, T. K. Mandal, I. D. Mall, Synthesis of different crystallographic Al2O3 nanomaterials from solid waste for application in dye degradation, RSC Adv. 4 (2014) 50801-50810.
DOI: 10.1039/c4ra08842e
Google Scholar
[2]
V. Anand, V. C. Srivastava. Zinc oxide nanoparticles synthesis by electrochemical method: Optimization of parameters for maximization of productivity and characterization. J. Alloys Comp. 636 (2015) 288–292.
DOI: 10.1016/j.jallcom.2015.02.189
Google Scholar
[3]
S. Das, V. C. Srivastava, Copper succinate nanoparticles synthesis by electrochemical method: Effect of pH on structural and textural properties. Mater. Lett. 150 (2015) 130–134.
DOI: 10.1016/j.matlet.2015.03.018
Google Scholar
[4]
F. Liu, J. He and L. Han, Study on PVA/Fe2O3 nanocomposites fabricated by traditional and bubble electrospinnings, Adv. Sci. Lett. 10 (2012) 615-617(3).
DOI: 10.1166/asl.2012.3356
Google Scholar
[5]
C-H. He, X-W. Li, P. Liu and Y. Li, Bubbfil Spinning for Fabrication of PVA Nanofibers, Therm. Sci. 19 (2015) 743-746.
DOI: 10.2298/tsci150413061h
Google Scholar
[6]
R. Saravanan, S. Karthikeyan, V. K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of a textile dye on visible light illumination, Mat. Sci. Eng. C 33 (2013) 91–98.
DOI: 10.1016/j.msec.2012.08.011
Google Scholar
[7]
G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh, K. A. Gray, Role of surface/interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO TiO2 Nanocomposites, J. Phys. Chem. C 112 (2008) 19040–44.
DOI: 10.1021/jp8068392
Google Scholar
[8]
Y. He, Z. Wu, L. Fu, C. Li, Y. Miao, L. Cao, H. Fan, B. Zou, Photochromism and size effect of WO3 and WO3 –TiO2 aquous sol, Chem. Mater. 15 (2003) 4039-45.
DOI: 10.1021/cm034116g
Google Scholar
[9]
G. Marci, V. Augugliaro, M. J. L. Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. J. D. Tilley, A. M. Venezia, Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime, J. Phys. Chem. B 105 (2001).
DOI: 10.1021/jp003173j
Google Scholar
[10]
W. Cun, Z. Jincai, W. Xinming, M. Bixian, S. Guoying, P. P. An, F. Jiamo, Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts, Appl. Catal. B 39 (2002) 269–79.
DOI: 10.1016/s0926-3373(02)00115-7
Google Scholar
[11]
J. Bandara, S. S. Kuruppu, U. W. Pradeep, The promoting effect of MgO layer in sensitized photodegradation of colorants on TiO2/MgO composite oxide, Colloids Surf. A 276 (2006) 197–202.
DOI: 10.1016/j.colsurfa.2005.10.059
Google Scholar
[12]
L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity, Inorg. Chem. 48 (2009)1819–1825.
DOI: 10.1021/ic802293p
Google Scholar
[13]
S. T. Jun, G. M. Choi, Composition dependence of the electrical conductivity of ZnO(n)-CuO(p) ceramic composite, J. Am. Ceram. Soc. 81 (1998) 695–699.
DOI: 10.1111/j.1151-2916.1998.tb02391.x
Google Scholar
[14]
D. Zhang, Enhanced photocatalytic activity for titanium dioxide by co-modification with copper and iron, Transition Met. Chem. 35 (2010) 933–938.
DOI: 10.1007/s11243-010-9414-6
Google Scholar
[15]
R. C. Wang, H. Y. Lin, ZnO-CuO core-shell nanorods and CuO-nanoparticle-ZnO-nanorod integrated structures, Appl. Phys. A 95 (2009) 813–818.
DOI: 10.1007/s00339-009-5079-4
Google Scholar
[16]
A. Zaoui, M. Ferhat, R. Ahuja, Magnetic properties of (ZnO)1/(CuO)1(001) superlattice, Appl. Phys. Lett. 94 (2009) 102102.
DOI: 10.1063/1.3095811
Google Scholar
[17]
C. C. Tseng, Y. H. Chou, C. M. Liu, Y. M. Liu, M. D. Ger, Y. Y. Shu, Microwave-assisted hydrothermal synthesis of zinc oxide particles starting from chloride precursor, Mater. Res. Bull. 47 (2012) 96–100.
DOI: 10.1016/j.materresbull.2011.09.027
Google Scholar
[18]
V. Anand, Harshavardhan, V. C. Srivastava, Synthesis and characterization of copper nanoparticles by electrochemical method: effect of pH. J. Nano Res. 31 (2015) 81-92.
DOI: 10.4028/www.scientific.net/jnanor.31.81
Google Scholar
[19]
J. Gajendiran, V. Rajendran, Synthesis and characterization of coupled semiconductor metal oxide (ZnO/CuO) nanocomposite, Materials Lett. 116 (2014) 311–313.
DOI: 10.1016/j.matlet.2013.11.063
Google Scholar
[20]
J. Bandara, U. W. Pradeep, R. G. S. J. Bandara, The role of n-p junction electrodes in minimizing the charge recombination and enhancement of photocurrent and photovoltage in dye sensitized solar cells, J. Photochem. Photoboil. A Chem. 170 (2005).
DOI: 10.1016/j.jphotochem.2004.08.023
Google Scholar
[21]
Z. L. Jin, X. J. Zhang, Y. X. Li, S. B. Li, G. X. Lu, 5. 1% apparent quantum efficiency for stable hydrogen generation over eosinsensitized CuO/TiO2 photocatalyst under visible light irradiation, Catal. Comm. 8 (2007) 1267–1273.
DOI: 10.1016/j.catcom.2006.11.019
Google Scholar
[22]
B. Y. Zhu, C. H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, J.T. -L. Thong, Co-synthesis of ZnO–CuO nanostructures by directly heating brass in air, Adv. Funct. Mater. 16 (2006) 2415–2422.
DOI: 10.1002/adfm.200600251
Google Scholar
[23]
G. N. S. Vijayakumar, S. Devashanka, M. Rathnakumari, P. Suresh Kumar, Synthesis of electrospun ZnO/CuO nanocomposite fibers and their dielectric and non-linear optic studies, J. Alloys Comp. 507 (2010) 225–229.
DOI: 10.1016/j.jallcom.2010.07.161
Google Scholar
[24]
R. Udayabhaskar, B. Karthikeyan, Optical and phonon properties of ZnO: CuO mixed nanocomposite, J. Appl. Phys. 115 (2014) 154303-154303-7.
Google Scholar
[25]
B. Li, Y. Wang, Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite, Superlattices Microstructures 47 (2010) 615-623.
DOI: 10.1016/j.spmi.2010.02.005
Google Scholar
[26]
M. Srivastava, A. K. Ojha, S. Chaubey, P. K. Sharma, A. C. Pandey, Influence of calcinations temperature on physical properties of the nanocomposites containing spinel and CuO phases, J. Alloys Comp. 494 (2010) 275–284.
DOI: 10.1016/j.jallcom.2010.01.008
Google Scholar
[27]
P. R. Potti, V. C. Srivastava, Effect of dopants on ZnO mediated photocatalysis of dye bearing waste water: A review, Mater Sci. Forum 757 (2013) 165-174.
DOI: 10.4028/www.scientific.net/msf.757.165
Google Scholar
[28]
P. Sathishkumar, R. Sweena, J. J. Wu, S. Anandan, Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution, Chem. Eng. J. 171 (2011) 136–140.
DOI: 10.1016/j.cej.2011.03.074
Google Scholar
[29]
S. H. Aliyu, H. A. Abdullah, Z. Abbas, Solid state characterization of Cu-ZnO nanocomposite synthesised via micro-wave irradiation, The Int. J. Eng. Sci. 3 (2014) 47-53.
Google Scholar
[30]
F. Lu, W. Cai and Y. Zhang, ZnO Hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance, Adv. Funct. Mater. 18 (2008)1047-1056.
DOI: 10.1002/adfm.200700973
Google Scholar
[31]
M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. Moreb and S. Ogale, Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties, J Mater. Chem. 22 (2012) 17055-17062.
DOI: 10.1039/c2jm32660d
Google Scholar
[32]
T. Chang, Z. Li, G. Yun, Y. Jia and H. Yang, Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method, Nano-Micro Lett. 5 (2013) 163-168.
DOI: 10.1007/bf03353746
Google Scholar