[1]
R. Nair, S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, D.S. Kumar, Nanoparticulate material delivery to plants, Plant Sci., 179 (2010) 154-163.
DOI: 10.1016/j.plantsci.2010.04.012
Google Scholar
[2]
J.E. Canas, M. Long, S. Nations, R. Vadan, L. Dai, M. Luo, R. Ambikapathi, E.H. Lee, D. Olszyk, Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species, Environ. Toxicol. Chem., 27 (2008).
DOI: 10.1897/08-117.1
Google Scholar
[3]
M. Răcuciu, D. Creangă, Cytogenetic changes induced by aqueous ferrofluids in agricultural plants, J. Magn. Magn. Mater., 311 (2007) 288-290.
DOI: 10.1016/j.jmmm.2006.10.1184
Google Scholar
[4]
N. Mir, M. Bahrami, E. Safari, S.M. Hosseinpour-Mashkani, Fluorescent superparamagnetic γ-Fe2O3 hollow nanoparticles: synthesis and surface modification by one-pot co-precipitation method, J. Cluster Sci., (2014).
DOI: 10.1007/s10876-014-0800-7
Google Scholar
[5]
V. Shah, I. Belozerova, Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds, Water Air Soil Pollut., 197 (2009) 143-148.
DOI: 10.1007/s11270-008-9797-6
Google Scholar
[6]
R. Doshi, W. Braida, C. Christodoulatos, M. Wazne, G. O'Connor, Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities, Environ. Res., 106 (2008) 296-303.
DOI: 10.1016/j.envres.2007.04.006
Google Scholar
[7]
M. -H. Seo, M. Yuasa, T. Kida, J. -S. Huh, K. Shimanoe, N. Yamazoe, Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes, Sensors Actuat. B Chem., 137 (2009) 513-520.
DOI: 10.1016/j.snb.2009.01.057
Google Scholar
[8]
J. Fu, Photocatalytic properties of glass ceramics containing anatase-type TiO2, Mater. Lett., 68 (2012) 419-422.
DOI: 10.1016/j.matlet.2011.11.016
Google Scholar
[9]
N. Mir, K. Lee, I. Paramasivam, P. Schmuki, Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells, Chem. - Europ. J., 18 (2012) 11862-11866.
DOI: 10.1002/chem.201202002
Google Scholar
[10]
N. Mir, M. Salavati-Niasari, TiO2 nanoparticle aggregations prepared by nitro-functionalized tripodal ligand as promising candidates for dye-sensitized solar cells, Mater. Sci. Semicond. Process., 27 (2014) 702-710.
DOI: 10.1016/j.mssp.2014.08.011
Google Scholar
[11]
F. Hong, F. Yang, C. Liu, Q. Gao, Z. Wan, F. Gu, C. Wu, Z. Ma, J. Zhou, P. Yang, Influences of Nano-TiO2 on the chloroplast aging of spinach under light, Biol. Trace Elem. Res., 104 (2005) 249-260.
DOI: 10.1385/bter:104:3:249
Google Scholar
[12]
F. Hong, J. Zhou, C. Liu, F. Yang, C. Wu, L. Zheng, P. Yang, Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach, Biol. Trace Elem. Res., 105 (2005) 269-279.
DOI: 10.1385/bter:105:1-3:269
Google Scholar
[13]
L. Zheng, F. Hong, S. Lu, C. Liu, Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach, Biol. Trace Elem. Res., 104 (2005) 83-91.
DOI: 10.1385/bter:104:1:083
Google Scholar
[14]
F. Yang, F. Hong, W. You, C. Liu, F. Gao, C. Wu, P. Yang, Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach, Biol. Trace Elem. Res., 110 (2006) 179-190.
DOI: 10.1385/bter:110:2:179
Google Scholar
[15]
B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353 (1991) 737-740.
DOI: 10.1038/353737a0
Google Scholar
[16]
H. Zhang, Y. Zhou, M. Zhang, T. Shen, Y. Li, D. Zhu, Photoinduced charge separation across colloidal TiO2 and fluorescein derivatives, J. Phy. Chem. B, 106 (2002) 9597-9603.
DOI: 10.1021/jp020335y
Google Scholar
[17]
C. Vilain, F. Goettmann, A. Moores, P. Le Floch, C. Sanchez, Study of metal nanoparticles stabilised by mixed ligand shell: a striking blue shift of the surface-plasmon band evidencing the formation of Janus nanoparticles, J. Mater. Chem., 17 (2007).
DOI: 10.1039/b706613a
Google Scholar
[18]
L. Ma, L.R. Ahuja, T. Bruulsema, Quantifying and understanding plant nitrogen uptake for systems modeling, CRC Press, (2008).
DOI: 10.1201/9781420052978
Google Scholar
[19]
ISTA, International Seed Testing Association. International rules for seed testing, Seed Sci. Technol., 27(Suppl) (1999) 333.
DOI: 10.15258/istarules.2015.i
Google Scholar
[20]
M. Khajeh-Hosseini, A.A. Powell, I.J. Bingham, The interaction between salinity stress and seed vigour during germination of soyabean seeds, Seed Sci. Technol., 31 (2003) 715-725.
DOI: 10.15258/sst.2003.31.3.20
Google Scholar
[21]
M.B. Shine, K.N. Guruprasad, A. Anand, Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field, Bioelectromagn., 32 (2011) 474-484.
DOI: 10.1002/bem.20656
Google Scholar
[22]
A. Vashisth, S. Nagarajan, Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field, J. Plant Physiol., 167 (2010) 149-156.
DOI: 10.1016/j.jplph.2009.08.011
Google Scholar
[23]
A. Siedlecka, T. BaszyńAski, Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency, Physiologia Plantarum, 87 (1993) 199-202.
DOI: 10.1111/j.1399-3054.1993.tb00142.x
Google Scholar
[24]
M. Davies, R.L. Jones, Infra-red absorptions and molecular structures of phenol, phenolphthalein, fluorescein, and some alkali derivatives, J. Chem. Soc., (1954) 120-125.
DOI: 10.1039/jr9540000120
Google Scholar
[25]
L. Wang, A. Roitberg, C. Meuse, A.K. Gaigalas, Raman and FTIR spectroscopies of fluorescein in solutions, Spectrochim. Acta Part A: Mol. Biomol. Spect., 57 (2001) 1781-1791.
DOI: 10.1016/s1386-1425(01)00408-5
Google Scholar
[26]
P.D. Cozzoli, A. Kornowski, H. Weller, Low-temperature synthesis of soluble and processable organic-capped anatase tio2 nanorods, J. Am. Chem. Soc., 125 (2003) 14539-14548.
DOI: 10.1021/ja036505h
Google Scholar
[27]
G. Benkö, B. Skårman, R. Wallenberg, A. Hagfeldt, V. Sundström, A.P. Yartsev, Particle size and crystallinity dependent electron injection in fluorescein 27-sensitized TiO2 films, J. Phy. Chem. B, 107 (2003) 1370-1375.
DOI: 10.1021/jp026442+
Google Scholar
[28]
G. Benkö, M. Hilgendorff, A.P. Yartsev, V. Sundström, Electron injection and recombination in fluorescein 27-sensitized TiO2 thin films, J. Phy. Chem. B, 105 (2001) 967-974.
DOI: 10.1021/jp002010s
Google Scholar
[29]
P.J. Wilson, K.E.N. Thompson, J.G. Hodgson, Specific leaf area and leaf dry matter content as alternative predictors of plant strategies, New Phytologist, 143 (1999) 155-162.
DOI: 10.1046/j.1469-8137.1999.00427.x
Google Scholar
[30]
H. Feizi, P. Rezvani Moghaddam, N. Shahtahmassebi, A. Fotovat, Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth, Biol. Trace Elem. Res., 146 (2012) 101-106.
DOI: 10.1007/s12011-011-9222-7
Google Scholar
[31]
O. f. Owolade, D. Ogunlet, Effects of titanium dioxide on the diseases, development and yield of edible cowpea, J. Plant Protect. Res., 48 (2008) 329-335.
DOI: 10.2478/v10045-008-0042-5
Google Scholar
[32]
M. Ruffini Castiglione, L. Giorgetti, C. Geri, R. Cremonini, The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L, J. Nanoparticle Res., 13 (2011) 2443-2449.
DOI: 10.1007/s11051-010-0135-8
Google Scholar
[33]
D. Lin, B. Xing, Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth, Environ. Poll., 150 (2007) 243-250.
DOI: 10.1016/j.envpol.2007.01.016
Google Scholar
[34]
N. Umezawa, K. Tanaka, Y. Urano, K. Kikuchi, T. Higuchi, T. Nagano, Novel fluorescent probes for singlet oxygen, Angew. Chem. Int. Ed., 38 (1999) 2899-2901.
DOI: 10.1002/(sici)1521-3773(19991004)38:19<2899::aid-anie2899>3.0.co;2-m
Google Scholar
[35]
B. Ou, M. Hampsch-Woodill, R.L. Prior, Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe, J. Agric. Food Chem., 49 (2001) 4619-4626.
DOI: 10.1021/jf010586o
Google Scholar
[36]
V. Kasche, L. Lindqvist, Reactions between the triplet state of fluorescein and oxygen1, J. Phys. Chem., 68 (1964) 817-823.
DOI: 10.1021/j100786a019
Google Scholar