A Facile Preparation of Flexible Alumina/Carbon Composite Nanofibers Film

Article Preview

Abstract:

Flexible alumina (Al2O3)/carbon (C) composite nanofibers film has been fabricated via electrospinning, followed by pre-oxidation and carbonization. Polyacrylonitrile (PAN)/Polyvinylpyrrolidone (PVP) and aluminum hydroxyacetate (Al(OH)C4H6O4) acted as carbon precursor and Al2O3 precursor, respectively. The obtained Al2O3/C nanofibers films were systematically characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FTIR), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and flexural tests. The results indicated that Al2O3/C composite nanofibers with rough surface consisted of graphitic phase and γ-Al2O3 phase. The Al2O3 covering on the surface of nanofibers improved the flexibility of carbon nanofibers (CNFs) film. Moreover, with the amount of Al2O3 increasing, both flexural rigidity and flexural modulus of Al2O3/C nanofibers film decreased drastically. In the other words, the flexibility of CNFs film improved greatly. The Al2O3/C nanofibers film with the mass ratio of Al(OH)C4H6O4: PAN being 4:1 exhibited flexural modulus that was about 11 times lower than that of CNFs film without Al2O3, suggesting that the highly flexible Al2O3/C nanofibers film was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-127

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.J. Green, D.R. Dean, U.K. Vaidya, E. Nyairo, Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior, Composites Part A: Applied Science and Manufacturing 40 (2009).

DOI: 10.1016/j.compositesa.2009.05.010

Google Scholar

[2] C. Kang, R. Baskaran, J. Hwang, B.C. Ku, W. Choi, Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery, Carbon 68 (2014) 493-500.

DOI: 10.1016/j.carbon.2013.11.026

Google Scholar

[3] O. Monereo, S. Claramunt, M.M. Marigorta, M. Boix, R. Leghrib, J.D. Prades, A. Cornet, P. Merino, C. Merino, A. Cirera, Flexible sensor based on carbon nanofibers with multifunctional sensing features, Talanta 107 (2013) 239-247.

DOI: 10.1016/j.talanta.2013.01.022

Google Scholar

[4] J.S. Bonso, G.D. Kalaw, J.P. Ferraris, High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications, Journal of Materials Chemistry A 2 (2014) 418-424.

DOI: 10.1039/c3ta13779a

Google Scholar

[5] J.E. Yang, I. Jang, M. Kim, S.H. Baeck, S. Hwang, S.E. Shim, Electrochemically polymerized vine-like nanostructured polyaniline on activated carbon nanofibers for supercapacitor, Electrochimica Acta 111 (2013) 136-143.

DOI: 10.1016/j.electacta.2013.07.183

Google Scholar

[6] D. Gao, L. Wang, C. Wang, Q. Wei, Electrospinning of porous carbon nanocomposites for supercapacitor, Fibers and Polymers 16 (2015) 421-425.

DOI: 10.1007/s12221-015-0421-2

Google Scholar

[7] S. Bal, Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites, Materials & Design 31 (2010) 2406-2413.

DOI: 10.1016/j.matdes.2009.11.058

Google Scholar

[8] S.K. Nataraj, B.H. Kim, J.H. Yun, D.H. Lee, T.M. Aminabhavi, K.S. Yang, Effect of added nickel nitrate on the physical, thermal and morphological characteristics of polyacrylonitrile-based carbon nanofibers, Materials Science and Engineering: B 162 (2009).

DOI: 10.1016/j.mseb.2009.03.008

Google Scholar

[9] N.A. Garcia-Gomez, H.A. Mosqueda, D.I. Garcia-Gutierrez, E.M. Sanchez, Electrochemical behavior of TiO2/carbon dual nanofibers, Electrochimica Acta 116 (2014) 19-25.

DOI: 10.1016/j.electacta.2013.10.208

Google Scholar

[10] C.K. Liu, K. Lai, W. Liu, M. Yao, R.J. Sun, Preparation of carbon nanofibres through electrospinning and thermal treatment, Polymer International 58 (2009) 1341-1349.

DOI: 10.1002/pi.2669

Google Scholar

[11] J. Li, E.H. Liu, W. Li, X.Y. Meng, S.T. Tan, Nickel/carbon nanofibers composite electrodes as supercapacitors prepared by electrospinning, Journal of Alloys and Compounds 478 (2009) 371-374.

DOI: 10.1016/j.jallcom.2008.11.024

Google Scholar

[12] L. Huang, N.N. Bui, S.S. Manickam, J.R. McCutcheon, Controlling electrospun nanofiber morphology and mechanical properties using humidity, Journal of Polymer Science Part B: Polymer Physics 49 (2011) 1734-1744.

DOI: 10.1002/polb.22371

Google Scholar

[13] M. Inagaki, Y. Yang, F. Kang, Carbon nanofibers prepared via electrospinning, Advanced Materials 24 (2012) 2547-2566.

DOI: 10.1002/adma.201104940

Google Scholar

[14] S.K. Nataraj, K.S. Yang, T.M. Aminabhavi, Polyacrylonitrile-based nanofibers—A state-of-the-art review, Progress in Polymer Science 37 (2012) 487-513.

DOI: 10.1016/j.progpolymsci.2011.07.001

Google Scholar

[15] J. Liu, Z. Yue, H. Fong, Continuous nanoscale carbon fibers with superior mechanical strength, Small 5 (2009) 536-542.

DOI: 10.1002/smll.200801440

Google Scholar

[16] S.N. Arshad, M. Naraghi, I. Chasiotis, Strong carbon nanofibers from electrospun polyacrylonitrile, Carbon 49 (2011) 1710-1719.

DOI: 10.1016/j.carbon.2010.12.056

Google Scholar

[17] P. Zhu, Y. Hong, B. Liu, G. Zou, The synthesis of titanium carbide-reinforced carbon nanofibers, Nanotechnology 20 (2009) 255603.

DOI: 10.1088/0957-4484/20/25/255603

Google Scholar

[18] J. Ye, Q. Hui, N. Li, J. Xiong, Fabrication of CNFs/ZnO nanocomposites with enhanced photocatalytic activity and mechanical properties, Fibers and Polymers 16 (2015) 113-119.

DOI: 10.1007/s12221-015-0113-y

Google Scholar

[19] C. Ma, Y. Li, J. Shi, Y. Song, L. Liu, High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching, Chemical Engineering Journal 249 (2014) 216-225.

DOI: 10.1016/j.cej.2014.03.083

Google Scholar

[20] C. Lai, Z. Zhou, L. Zhang, X. Wang, Q. Zhou, Y. Zhao, Y. Wang, X. -F. Wu, Z. Zhu, H. Fong, Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors, Journal of Power Sources 247 (2014).

DOI: 10.1016/j.jpowsour.2013.08.082

Google Scholar

[21] H. Liu, C.Y. Cao, F.F. Wei, P.P. Huang, Y.B. Sun, L. Jiang, W.G. Song, Flexible macroporous carbon nanofiber film with high oil adsorption capacity, Journal of Materials Chemistry A 2 (2014) 3557.

DOI: 10.1039/c3ta14468b

Google Scholar

[22] B. Zhao, R. Cai, S. Jiang, Y. Sha, Z. Shao, Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries, Electrochimica Acta 85 (2012) 636-643.

DOI: 10.1016/j.electacta.2012.08.126

Google Scholar

[23] F. Yang, X. Zhang, J. Han, S. Du, Mechanical properties of short carbon fiber reinforced ZrB2–SiC ceramic matrix composites, Materials Letters 62 (2008) 2925-2927.

DOI: 10.1016/j.matlet.2008.01.076

Google Scholar

[24] Z. Zhou, K. Liu, C. Lai, L. Zhang, J. Li, H. Hou, D.H. Reneker, H. Fong, Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid, Polymer 51 (2010) 2360-2367.

DOI: 10.1016/j.polymer.2010.03.044

Google Scholar

[25] Q. Yang, Y. Deng, W. Hu, Preparation of alumina/carbon nanotubes composites by chemical precipitation, Ceramics International 35 (2009) 1305-1310.

DOI: 10.1016/j.ceramint.2008.05.012

Google Scholar

[26] V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal, Journal of Hazardous Materials 185 (2011) 17-23.

DOI: 10.1016/j.jhazmat.2010.08.053

Google Scholar

[27] X. Yuan, S. Xu, J. Lü, X. Yan, L. Hu, Q. Xue, Facile synthesis of ordered mesoporous γ-alumina monoliths via polymerization-based gel-casting, Microporous and Mesoporous Materials 138 (2011) 40-44.

DOI: 10.1016/j.micromeso.2010.09.033

Google Scholar

[28] G. Di Girolamo, A. Brentari, C. Blasi, E. Serra, Microstructure and mechanical properties of plasma sprayed alumina-based coatings, Ceramics International 40 (2014) 12861-12867.

DOI: 10.1016/j.ceramint.2014.04.143

Google Scholar

[29] R. Norouzbeigi, M. Edrissi, J. Blendell, Preparation of Nano Alumina Powder via Combustion Synthesis: Porous Structure Optimization via Taguchi L16 Design, Journal of the American Ceramic Society 94 (2011) 4052-4058.

DOI: 10.1111/j.1551-2916.2011.04675.x

Google Scholar

[30] G. Cheng, T.H. Chang, Q. Qin, H. Huang, Y. Zhu, Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density, Nano Letters 14 (2014) 754-758.

DOI: 10.1021/nl404058r

Google Scholar

[31] P. Nayar, A. Khanna, D. Kabiraj, S.R. Abhilash, B.D. Beake, Y. Losset, B. Chen, Structural, optical and mechanical properties of amorphous and crystalline alumina thin films, Thin Solid Films 568 (2014) 19-24.

DOI: 10.1016/j.tsf.2014.07.053

Google Scholar

[32] Y. Wang, W. Li, Y. Xia, X. Jiao, D. Chen, Electrospun flexible self-standing γ-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media, Journal of Materials Chemistry A 2 (2014) 15124.

DOI: 10.1039/c4ta01770f

Google Scholar

[33] R.O. Benevides, L.C.S. Nunes, Mechanical behavior of the alumina-filled silicone rubber under pure shear at finite strain, Mechanics of Materials 85 (2015) 57-65.

DOI: 10.1016/j.mechmat.2015.02.011

Google Scholar