A Novel Modified Sol-Gel Template Synthesis of High Aspect Ratio Silica Nanotubes in the Presence of Phosphoric Acid

Article Preview

Abstract:

Silica nanotubes with controlled diameter and length were synthesised by using a novel and modified template-sol-gel method. The consistency and order of silica nanotubes mainly depend on the anodic alumina membrane (AAO) template that was used during the preparation process. The AAO membrane was chemical etched using different concentrations (5, 7 and 10 wt %) of phosphoric acid. The obtained silica nanotubes had diameters in the range of 220-280 nm and thicknesses around 70-90 nm as observed by field emission scanning electron microscopy (FE-SEM). Scanning transmission electron microscopy (STEM) images enable us to view the arrangement of the hollow cylindrical silica nanotubes. Porosity of the silica nanotubes was investigated by nitrogen adsorption-desorption. The mesoporous silica nanotubes show characteristic type IV isotherm behaviour, with double capillary condensation step in the relative pressure range of 0.2-1.0 (p/p0). Thermogravimetric (TGA) and differential thermal (DTA) analyses confirm the thermal stability of the silica nanotubes and their weight changes and endo and exothermic reactions. The structural and functional group analyses of the silica nanotubes were carried out by using X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FT-IR).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-38

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen, D.; Park, S.; Chen, J.; Redston, E.; Russell, P. A simple route for the preparation of mesoporous nanostructures using block copolymers. ACS Nano 2009, 9, 2827–2833.

DOI: 10.1021/nn900782k

Google Scholar

[2] Zhang, Y.; Liu, X.; Huang, J. Hierarchical mesoporous silica nanotubes derived from natural cellulose substance. ACS Appl. Mater. Interfaces 2011, 3, 3272–3275.

DOI: 10.1021/am200908t

Google Scholar

[3] Jung, J.; Parka, M.; Shinkai, S. Fabrication of silica nanotubes by using self-assembled gels and their applications in environmental and biological fields. Chem. Soc. Rev 2010, 39, 4286–4302.

DOI: 10.1039/c002959a

Google Scholar

[4] Ye, J.; Yin, Q.; Zhou, Y. Superhydrophilicity of anodic aluminum oxide films: From honeycomb" to "bird, s nest. Thin Solid Films 2009, 26, 517, 6012-6015.

DOI: 10.1016/j.tsf.2009.04.042

Google Scholar

[5] Hu, Y.; Ge, J.; Yin, Y. PDMS rubber as a single-source precursor for templated growth of silica nanotubes. Chem. Commun 2009, 8, 914–916.

DOI: 10.1039/b820755k

Google Scholar

[6] Steinhart, M.; Wehrspohn, B.; Gosele, U.; Wendorff, J. Nanotubes by template wetting: A modular assembly system. Angew. chem. int. ed 2004, 43, 1334-1344.

DOI: 10.1002/anie.200300614

Google Scholar

[7] Bian, S.; Ma, Z.; Zhang, L.; Niu, F.; Guo, W. Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chem. Commun2009, 10, 1261–1263.

DOI: 10.1039/b821196e

Google Scholar

[8] Yang, X.;   Tang, H.; Cao, K.; Song, H.; Sheng, W.; Wu, Q. Templated-assisted one-dimensional silica nanotubes: synthesis and applications. J. Mater. Chem2011, 21, 6122-6135.

DOI: 10.1039/c0jm04516k

Google Scholar

[9] Bae, H.;   Yoo, H.;   Kim, S.;  Lee, K.; Kim, J.;    Sung, M.;    Shin, H. Template-Directed synthesis of oxide nanotubes: Fabrication, Characterization, and Applications. Chem. Mater 2008, 3, 756-767.

DOI: 10.1021/cm702138c

Google Scholar

[10] Gong, Z.; Ji, G.; Zheng, M.; Chang, X.; Dai, W.; Pan, L.; Shi, Y.; Zheng, Y. Structural characterization of mesoporous silica nanofibers synthesized within porous alumina membranes. Nanoscale Res. Lett 2009, 4, 1257–1262.

DOI: 10.1007/s11671-009-9389-4

Google Scholar

[11] El-Safty, A.; Shenashen, K.; Shahat, A. Separation of macromolecules by hexagonal mesoporous membrane filters. Recent Researches in Modern Medicine 2011, 324–329.

Google Scholar

[12] Yamaguchi, A.; Uejo, F.; Yoda, T.; Uchida, T.; Tanamura, Y.; Yamashita, T.; Teramae, N. Self-assembly of a silica–surfactant nanocomposite in a porous alumina membrane. Nat. Mater, 2004, 3, 337–341.

DOI: 10.1038/nmat1107

Google Scholar

[13] El-Safty, S.; Shahat, A.; Nguyen, H. Nano-model membrane filters for the well-controlled separation of biomolecules. Colloids Surf. A, Physicochem. Eng. Aspects2011, 377, 44–53.

DOI: 10.1016/j.colsurfa.2010.12.015

Google Scholar

[14] Itoh, T.; Shimomura, T.; Hasegawa,Y.; Mizuguchi, J.; Hanaoka, T.; Hayashi, A. Assembly of an artificial biomembrane by encapsulation of an enzyme, formaldehyde dehydrogenase, into the nanoporous-walled silicananotube–inorganic composite membrane. J. Mater. Chem2011, 21, 251–256.

DOI: 10.1039/c0jm01523g

Google Scholar

[15] El-Safty, S.; Shenashen, A. Size-selective separations of biological macromolecules on mesocylinder silica arrays. Anal. Chim. Acta2011, 694, 151–161.

DOI: 10.1016/j.aca.2011.03.035

Google Scholar

[16] El-Safty, S.; Shahat, A.; Awual, R.; Mekawy, M. Large three-dimensional mesocage pores tailoring silica nanotubes as membrane filters: nanofiltration and permeation flux of proteins. J. Mater. Chem2011, 21, 5593–5603.

DOI: 10.1039/c0jm03269g

Google Scholar

[17] Gargiulo, N.; De Santo, I.; Causa,F.; Caputo, D.; Netti,A. Confined mesoporous silica membranes for albumin zero-order release. Microporous Mesoporous Mater, 2013, 167, 71–75.

DOI: 10.1016/j.micromeso.2012.04.003

Google Scholar

[18] Cauda, V.; Muhlstein, L.; Onida, B.; Bein,T. Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica. Microporous Mesoporous Mater, 2009, 118, 435–442.

DOI: 10.1016/j.micromeso.2008.09.022

Google Scholar

[19] Zhang, A.; Hou, K.; Gu, L.; Dai, C.; Liu, M.; Song, C.; Guo, X. Synthesis of silica nanotubes with orientation controlled mesopores in porous membranes via interfacial growth. Chem. Mater 2012, 24, 1005–1010.

DOI: 10.1021/cm300242n

Google Scholar

[20] Hou, S.; Wang, J.; Martin, R. Template-synthesized protein nanotubes. Nano Lett, 2005, 2, 231-234.

DOI: 10.1021/nl048305p

Google Scholar

[21] Poinern, G.; Ali, N.; Fawcett, D.; Progress in nano-engineered anodic aluminum oxide membrane development. Materials 2011, 4, 487-526.

DOI: 10.3390/ma4030487

Google Scholar

[22] Belwalkar, A.; Grasing, E.; Van Geertruyden, W.; Huang, Z.; Misiolek, Z. Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J MembSci 2008, 319, 192–198.

DOI: 10.1016/j.memsci.2008.03.044

Google Scholar

[23] Suzuki, N.; Yamauch, Y. Fabrication of Mesostructured Silica and Titania Rods on Substrates by Using Polycarbonate Membranes Journal of Nanomaterials 2010, Article ID 382043, 4 pages.

DOI: 10.1155/2010/382043

Google Scholar

[24] Yang, Z.; Niu, Z.; Cao, X.; Yang, Z.; Lu, Y.; Hu, Z.; Han, C. Template synthesis of uniform 1D mesostructured silica materials and their arrays in anodic alumina membranes. Angew. Chem. Int. Ed. 2003, 42, 4201 –4203.

DOI: 10.1002/anie.200250808

Google Scholar