[1]
M.K. Rai, S.D. Deshmukh, A.P. Ingle, A.K. Gade, Silver nanoparticles: the powerful nanoweapon against multidrug resistant bacteria, J. Appl. Microbiol. 112 (2012) 841-852.
DOI: 10.1111/j.1365-2672.2012.05253.x
Google Scholar
[2]
O.I. Kalantzi, G. Biskos, Methods for assessing basic particle properties and cytotoxicity of engineered nanoparticles, Toxics 2 (2014) 79-91.
DOI: 10.3390/toxics2010079
Google Scholar
[3]
Y. Qin, Silver-containing alginate fibers and dressing, Int. Wound. 2 (2005).
Google Scholar
[5]
N. Vigneshwaran, A.A. Kathe, P.V. Varada, R.P. Nachane, R.H. Balasubramanya, Functional finishing of cotton fabrics using silver nanoparticles, J. Nanosci. Nanotechnol. 7 (2007)1893-1897.
DOI: 10.1166/jnn.2007.737
Google Scholar
[6]
G.R. Turtle, Size and surface area dependent toxicity of silver nanoparticles in zebrafish embryo (Danio rerio), Master Thesis in toxicology submitted to Oregon State University, USA, (2012).
Google Scholar
[7]
M. Ahamed, M.S. Alsalhi, M.K. Siddiqui, Silver nanoparticle applications and human health, Clin. Chem. Acta, 411 (2010)1841-1848.
DOI: 10.1016/j.cca.2010.08.016
Google Scholar
[8]
S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager, In vitro toxicity of nanoparticles in BRl 3A rat liver cells, Toxicol. In Vitro, 19 (2005).
DOI: 10.1016/j.tiv.2005.06.034
Google Scholar
[10]
Y.S. Kim, M.Y. Song, J.D. Park, K.S. Song, H.R. Ryu, Y.H. Chung, H.K. Chang, J.H. Lee, K.H. Oh, B.J. Kelman, I.K. Hwang, I.J. Yu, Subchronic oral toxicity of silver nanoparticles, Part. Fibre Toxicol. 7 (2010) 1-11.
DOI: 10.1186/1743-8977-7-20
Google Scholar
[11]
H.J. Johnston, G. Hutchison, F.M. Christensen, S. Peters, V. Stone, A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the for the observed toxicity, Crit. Rev. Toxicol. 40 (2010).
DOI: 10.3109/10408440903453074
Google Scholar
[12]
Y. Xue, S. Zhang, Y. Huang, T. Zhang, X. Liu, Y. Hu, Z. Zhang, M. Tang, Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice, J. Appl. Toxicol. 32 (2012) 890-899.
DOI: 10.1002/jat.2742
Google Scholar
[13]
C.A. Austin, T.H. Umbreit, K.M. Brown, D.S. Barber, B.J. Dair, S. Francke-Carroll, A. Feswick, M.A. Saint-Louis, H. Hikawa, K.N. Siebein, P.L. Goering, Distribution of silver nanoparticles in pregnant mice and developing embryos, Nanotoxicology (2011).
DOI: 10.3109/17435390.2011.626539
Google Scholar
[14]
A.H. Faraj, P. Wipf, Nanoparticles in cellular drug delivery, Bioorg. Med. Chem. 17 (2009) 2950-2962.
Google Scholar
[15]
P.V. Asharani, M.P. Hande, S. Valiyaveettil, Anti-proliferative activity of silver nanoparticles, BMC Cell Biol. 10 (65) (2009) 1-14.
DOI: 10.1186/1471-2121-10-65
Google Scholar
[16]
Y.H. Hsin, C.F. Chen, S. Huang, T.S. Shih, P.S. Lai, P.J. Chueh, The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells, Toxicol. Lett. 179 (2008) 130-139.
DOI: 10.1016/j.toxlet.2008.12.010
Google Scholar
[17]
C. Carlson, S.M. Hussain, A.M. Schrand, L. K. Braydich-Stolle, K.L. Hess, R.L. Jones, J.J. Schlager, Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species, J. Phys. Chem. B 112(43) (2008).
DOI: 10.1021/jp712087m
Google Scholar
[18]
T.M. Kim, M. Kim, H.S. Park, U.S. Shin, M.S. Gong, H.W. Kim, Size-dependent cellular toxicity of silver nanoparticles, J. Biomed. Mater. Res. 100 (2012) 1033-1043.
DOI: 10.1002/jbm.a.34053
Google Scholar
[19]
J. Liu, R.H. Hurt, Ion release kinetics and particle persistence in aqueous non-silver colloids, Environ. Sci. Technol. 44 (2010) 2169-2175.
DOI: 10.1021/es9035557
Google Scholar
[20]
E.J. Park, J. Yi, Y. Kim, K. Choi, K. Park, Silver nanoparticles induce cytotoxicity by a Trojan horse type mechanism, Toxicol. In Vitro 24 (2010a) 872-878.
DOI: 10.1016/j.tiv.2009.12.001
Google Scholar
[21]
E.J. Park, E. Bae, J. Yi, Y. Kim, K. Choi, S.H. Lee, J. Yoon, B.C. Lee, K. Park, Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles, Environ. Toxicol. Pharmacol. 30(2) (2010b)162-168.
DOI: 10.1016/j.etap.2010.05.004
Google Scholar
[22]
R.C. Ma, C. Levard, S.M. Marinakos, Y. Cheng, J. Liu, F.M. Michel, G.E. Brown, V.G. Lowry, Size-controlled dissolution of organic-coated silver nanoparticles, Environ. Sci. Technol. 46 (2012) 752-759.
DOI: 10.1021/es201686j
Google Scholar
[23]
A.M. Schrand, L.K. Bradich-Stolle, J.J. Schlager, L. Dai, S.M. Hussain, Can silver nanoparticles be useful as potential biological labels?, Nanotechnology 19 (2006) 1–13.
DOI: 10.1088/0957-4484/19/23/235104
Google Scholar
[24]
R.R. Singh, P. Ramarao, Cellular uptake, cellular trafficking and cytotoxicity of silver nanoparticles, Toxicol. Lett. 213(2) (2012) 249-259.
DOI: 10.1016/j.toxlet.2012.07.009
Google Scholar
[25]
I.J. Yen, S.H. Hsu, C.L. Tsai, Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes, Small 5 (2009) 1553-1561.
DOI: 10.1002/smll.200900126
Google Scholar
[26]
Q. Jarrar, Silver nanoparticles toxicity: size effects, Master Thesis in Analytical Toxicology submitted for the University of Jordan, (2013).
Google Scholar
[27]
Q. Jarrar, A. Battah, F. Obeidat, K. Battah, Biochemical changes induced by the toxicity of variable sizes of silver nanoparticles, Brit. J. Pharmac. Res. 4(24) (2014) 2670-2678.
DOI: 10.9734/bjpr/2014/14666
Google Scholar
[28]
M. Almansour, Q. Jarrar, A. Battah, G. Jarrar, Histomorphmetric alterations induced in the testicular tissues by variable sizes of silver nanoparticles, In Press, J. Rep. Med. (2015).
DOI: 10.4067/s0717-95022015000200022
Google Scholar
[29]
L. Müller, M. Riediker, P. Wick, M. Mohr, P. Gehr, B. Rothen-Rutishauser, Oxidative stress and inflammation response after nanoparticles exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways, J. R. Soc. Interface, 12(108) (2009).
DOI: 10.1098/rsif.2009.0161.focus
Google Scholar
[30]
H.M. Braakhuis, I. Gosens, P. Krystek, J.A. Boere, F.R. Cassee, P.H. Fokkens, J.A. Post, H.V. Loveren, M.V. Park, Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles, Part. Fibre Toxicol. 11(1) (2014).
DOI: 10.1186/s12989-014-0049-1
Google Scholar
[31]
J. Seiffert, F. Hussain, C. Wiegman, L. Bey, W. Baker, A. Porter, M. Ryan, Y. Chang, A. Gow, J. Zhang, J. Zhu, T. Tetly, K.F. Chung, Pulmonary toxicity of instilled silver nanoparticles: Influence of size, coating and rat strain, 10(3) (2015).
DOI: 10.1371/journal.pone.0119726
Google Scholar
[32]
B. Farkas, Z.S. Geretovszky, On determining the spot size for laser flounce measurements. Appl. Surf. Sci. 2006, 252 (2006) 4728-4732.
DOI: 10.1016/j.apsusc.2005.07.111
Google Scholar
[33]
B.M. Jarrar, N.T. Taib, Histochemistry: Techniques and Horizon, Ist edition, King Saud University Press, Riyadh, (2008).
Google Scholar
[34]
L.K. Braydich-Stolle, B. Lucas, A. Schrand, R.C. Murdock, T. Lee, J.J. Schlager, S.M. Hussain, M.C. Hofmann, Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells, Toxicol. Sci. 116(2) (2010) 577-589.
DOI: 10.1093/toxsci/kfq148
Google Scholar
[35]
J.H. Sung, J.H. Ji, J.D. Park, J.U. Yoon, D.S. Kim, K.S. Jeon, Y.H. Chung, H.K. Chang, J.H. Lee, M.H. Cho, B. Kelman, J. Yu, Subchronic inhalation toxicity of silver nanoparticles, Toxicol. Sci. 108(2) (2009) 452-461.
DOI: 10.1093/toxsci/kfn246
Google Scholar
[36]
J.H. Sung, J.H. Ji, J.U. Yoon, D.S. Kim, M.Y. Song, J. Jeong, B.S. Han, J.H. Han, Y.H. Chung , J. Kim, T.S. Kim, H.K. Chang, E.J. Lee, J.H. Lee, I.J. Yu, Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles, Inhal. Toxicol. 20(6) (2008).
DOI: 10.1080/08958370701874671
Google Scholar
[37]
L.V. Stebounova, A. Adamcakova-Dodd, J.S. Kim, H. Park, P.T. O'Shaughnessy, V.H. Grassian, P. Thorne, Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model, Part. Fibre Toxicol. 8(1) (2011) 5.
DOI: 10.1186/1743-8977-8-5
Google Scholar
[38]
T. Kaewamatawang, W. Banlunara, C. Maneewttanapinyo, S. Ekgasit, Acute and subacute pulmonary toxicity caused by by a single intratrachial instillation of colloidal silver nanoparticles in mice: pathobiological changes and metallthionein responses, J. Environ. Parthol. Toxicol. Oncol. 33(1) (2014).
DOI: 10.1615/jenvironpatholtoxicoloncol.2014010179
Google Scholar
[39]
Y. Arai, T. Miyayama, S. Hirano, Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages, Toxicology 328 (2015) 84-92.
DOI: 10.1016/j.tox.2014.12.014
Google Scholar
[40]
D.V. Ovchinnikov, Macrophages in the embryo and beyond: Much more than just giant phagocytes, Genesis 46(9) (2008) 447-462.
DOI: 10.1002/dvg.20417
Google Scholar
[41]
T.E. King, J.A. Tooze, M.J. Schhawarz, K.R. Brown, R.M. Cherniack, Predicting survival in idiopathic pulmonary fibrosis, Am. J. Respir. Crit. Care Med. 164 (2001) 1171-1181.
DOI: 10.1164/ajrccm.164.7.2003140
Google Scholar
[42]
V. Stone, J.D. Shaw, M. Brown, W. Macnee, S.P. Faux, K. Donaldson , The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function, Toxicol. in Vitro 1998, 12(6) (1998) 649-659.
DOI: 10.1016/s0887-2333(98)00050-2
Google Scholar
[43]
C. Sioutas, R.J. Delfino, M. Singh, Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research, Environ. Health Perspect. 113(8) (2005) 947-955.
DOI: 10.1289/ehp.7939
Google Scholar
[44]
T. Coccini, S. Barni, R. Vaccarone, P. Mustarelli, L. Manzo, E. Roda, Pulmonary toxicity of instilled cadmium-doped silica nanoparticles during acute and subacute stages in rats, Histol. Histopathol. 28(2) (2013) 195-209.
Google Scholar
[45]
W.A. Pryor, K. Stone, Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite, Ann. N. Y. Acad. Sci. 686 (1993) 12-28.
DOI: 10.1111/j.1749-6632.1993.tb39148.x
Google Scholar
[46]
K.A. Dawson, A. Salvati, I. Lynch, Nanotoxicology: nanoparticles reconstruct lipids, Nat. Nanotechnol. 4 (2009) 84–85.
Google Scholar
[47]
G. Oberdörster, Z. Sharp , V. Atudorei, A. Elder, R. Gelein, W. Kreyling, C. Cox, Translocation of inhaled ultrafine particles to the brain, Inhal. Toxicol. 16 (2004) 437–445.
DOI: 10.1080/08958370490439597
Google Scholar
[48]
S.R. Saptrashi, A. Dusch, L. Lopata, Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticles, J. Nanobiotechnol. 11 (2013) 26.
Google Scholar