Hopping Conduction in Structures with Ge Nanoclusters Grown on Oxidized Si (001)

Article Preview

Abstract:

Conductivity and capacitance in structures with Ge nanoclusters grown on oxidized Si (001) with different morphology have been investigated for the temperature range 120-290 K and frequencies 1 kHz-1MHz in co-planar geometry. It was found that structures exhibited T-1/3 conductivity dependence. The Mott’s variable range hopping through quasi-band of localized states at the Fermi level of Ge nanoclusters and their interfaces was found to be the dominant transport mechanism in the surface conductivity channel. The quasi-band width depends of surface morphology varying in the range 110-130 meV, while the middle of the band is located at Ev+140 meV. The peak of reduced conductivity and capacitance were observed under conditions when Fermi level is in the middle of this band.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-188

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Masini, L. Colace, and G. Assanto, Si-based optoelectronics for communications, Mater. Sci. Eng. B, 89 (2002), 2-9.

Google Scholar

[2] S. Tiwari, IEEE Int. Electron Devices Meeting Volatile and non-volatile memories in silicon with nano-crystal storage, IEEE Int. Electron Devices Meeting, (1995), 521-524.

DOI: 10.1109/iedm.1995.499252

Google Scholar

[3] J.H. Wu, P.W. Li, Semicond. Sci. Technol. Ge nanocrystal metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0. 88Ge0. 12, Semicond. Sci. Technol., 22 (2007), S89.

DOI: 10.1088/0268-1242/22/1/s21

Google Scholar

[4] A.A. Shklyaev, M. Ichikawa, Three-dimensional Si islands on Si(001) surfaces, Phys. Rev. B, 65 (2001), 045307.

DOI: 10.1103/physrevb.65.045307

Google Scholar

[5] A. A. Shklyaev, M. Shibata, and M. Ichikawa, High-density ultrasmall epitaxial Ge islands on Si(111) surfaces with a SiO2 coverage, Phys. Rev. B, 62 (2000) , 1540-1543.

DOI: 10.1103/physrevb.62.1540

Google Scholar

[6] N. P. Stepina, E. S. Koptev, A. V. Dvurechenskii, A. I. Nikiforov, J. Gerharz, J. Moers, and D. Gruetzmacher, Giant mesoscopic photoconductance fluctuations in Ge/Si quantum dot system, Appl. Phys. Lett., 98 (2011) , 142101.

DOI: 10.1063/1.3574022

Google Scholar

[7] A. I. Yakimov, C. J. Adkins, R. Boucher, A. V. Dvurechenskii, A.I. Nikiforov, O. P. Pchelyakov, and G. Biskupski, Hopping conduction and field effect in Si modulation-doped structures with embedded Ge quantum dots, Phys. Rev. B, 59 (1999).

DOI: 10.1103/physrevb.59.12598

Google Scholar

[8] V. A. Kul'bachinskiıˇ, V. G. Kytin, R. A. Lunin, A. V. Golikov, I.G. Malkina, B. N. Zvonkov, and Yu. N. Saf'yanov, Photoluminescence and transport properties of multilayer InAs/GaAs structures with quantum dots, Semiconductors, 33 (1999), 318-322.

DOI: 10.1134/1.1187687

Google Scholar

[9] H. Z. Song, K. Akahane, S. Lan, H. Z. Xu, Y. Okada, and M. Kawabe, Phys. Rev. B, 64, 085303 (2001).

Google Scholar

[10] R. Peibst, J. S. de Sousa, and K. R. Hofmann , In-plane photocurrent of self-assembled InxGa1-xAs/GaAs(311)B quantum dot arrays, Phys. Rev. B, 64 (2001), 085303.

Google Scholar

[11] V.S. Lysenko, Y.V. Gomeniuk, S.V. Kondratenko, Ye. Ye. Melnichuk, Y.N. Kozyrev, and C. Teichert, Transport and Photoelectric Effects in Structures with Ge and SiGe Nanoclusters Grown on Oxidized Si (001), Advanced Materials Research, 854 (2014).

DOI: 10.4028/www.scientific.net/amr.854.11

Google Scholar

[12] A. Barski, M. Derivaz, J. L. Rouvière, and D. Buttard, Epitaxial growth of germanium dots on Si(001) surface covered by a very thin silicon oxide layer, Appl. Phys. Lett., 77 (2000), 3541-3543.

DOI: 10.1063/1.1328771

Google Scholar

[13] V.S. Lysenko, S.V. Kondratenko, Y.N. Kozyrev, V.P. Kladko, Y.V. Gomeniuk, Y.Y. Melnichuk and N. B. Blanchard,  Surface reconstruction and optical absorption changes for Ge nanoclusters grown on chemically oxidized Si (100) surfaces, Semicond. Sci. Technol., 28 (2013).

DOI: 10.1088/0268-1242/28/8/085009

Google Scholar

[14] N. F. Mott, Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968), 1.

Google Scholar

[15] B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

Google Scholar

[16] N. F. Mott, E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon-Press, Oxford, 1971).

Google Scholar

[17] M. Pollak and T.H. Geballe Low-frequency conductivity due to hopping processes in silicon, Phys. Rev., 122 (1961), 1742-1753.

DOI: 10.1103/physrev.122.1742

Google Scholar

[18] A.R. Long, Frequency dependent loss in amorphous semiconductors, Advances in Physics, 31 (1982), 553-637.

DOI: 10.1080/00018738200101418

Google Scholar

[19] T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys., 54 (1982), 437-672.

DOI: 10.1103/revmodphys.54.437

Google Scholar

[20] R. Beyer, H. Burghardt and J. Borany, Germanium nanocrystals in SiO2, relevance of the defect state distribution at the Si-SiO2 interface, Phys. Status Solidi C 10 (2013), 607-610.

DOI: 10.1002/pssc.201200883

Google Scholar

[21] Ji-Sang Park, Byungki Ryu, Chang-Youn Moon, and K. J. Chang, Defects Responsible for the Hole Gas in Ge/Si Core-Shell Nanowires, Nano Lett., 10 (2010), 116-121.

DOI: 10.1021/nl9029972

Google Scholar

[22] E. H. Poindexter, G. J. Gerardi, M. E. Rueckel, P. J. Caplan, N. M. Johnson, and D. K. Biegelsen, Electronic traps and Pb centers at the Si/SiO2 interface, Band-gap energy distribution, J. Appl. Phys., 56 (1984), 2844-2849.

DOI: 10.1063/1.333819

Google Scholar

[23] V. I Arkhipov, E. V Emelianova, G. J Adriaenssens, H Bässler, Equilibrium carrier mobility in disordered organic semiconductors, Journal of Non-Crystalline Solids, (2002) 299-302, 1047-1051.

DOI: 10.1016/s0022-3093(01)01071-7

Google Scholar

[24] A. Hunt, One-dimensional hopping conductivity calculations, Philosophical Magazine B, 64 (1991), 327-334.

DOI: 10.1080/13642819108207623

Google Scholar