Electron Transport through Thin SiO2 Films Containing Si Nanoclusters

Article Preview

Abstract:

The electron transport mechanisms through nanocomposite SiO2(Si) films containing Si nanoclusters into dielectric SiO2 matrix have been investigated. SiO2(Si) films were obtained by oxide assisted growth. At the first stage the SiOx films with different content of excess Si were deposited by LP CVD method. Second stage includes high temperature (T=1100 C) annealing of SiOx films that promotes formation of Si nanocrystals. Current transport through SiO2(Si) films were studied in temperature range 100-350 K. As it was observed the dominant mechanism of electron transport depends as on voltage and temperature. The Mott’s conductivity caused by traps near Fermi level was revealed in low-voltage range for all temperatures. At increasing the voltage the SCLC conductivity is observed for films with higher content of excess silicon while in case low content of Si the Pool-Frenkel mechanism dominates. The further increase in voltage results in a double carrier injection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-177

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, K. Chan, A silicon nanocrystals based memory, Appl. Phys. Lett. 68 (1996) 1377-1379.

DOI: 10.1063/1.116085

Google Scholar

[2] O.L. Bratus', A.A. Evtukh, V.A. Ievtukh, V.G. Litovchenko, Nanocomposite SiO2(Si) films as a medium for non-volatile memory. J. Non-Crystal. Solids, 354 (2008) 4278-4281.

DOI: 10.1016/j.jnoncrysol.2008.06.037

Google Scholar

[3] A. Evtukh, O. Bratus', T. Gorbanyuk, V. Ievtukh, Electrical characterization of SiO2(Si) films as a medium for charge storage. Phys. Stat. Sol. (c). 5(12) (2008) 3663-3666.

DOI: 10.1002/pssc.200780165

Google Scholar

[4] D.J. Lockwood, Light emission in silicon: from physics to devices, Semiconductors and Semimetals, Vol. 49, Academic press, San Diego, (1998).

Google Scholar

[5] V. Kapaklis, C. Politis, P. Poulopoulos, P. Schweiss, Photoluminescence from silicon nanoparticles prepared from bulk amorphous silicon monoxide by the disproportionation reaction, Appl. Phys. Lett. 87, 123114 (2005).

DOI: 10.1063/1.2043246

Google Scholar

[6] H. Rinnert, O. Jombois, M. Vergnat, M. Molinari, Study of the photoluminescence of amorphous and crystalline silicon clusters in SiOx thin films, Optical Materials, 27, 983-987 (2005).

DOI: 10.1016/j.optmat.2004.08.048

Google Scholar

[7] H.I. Hanafi, S. Tiwari, I. Khan, Fast and long retention-time nano-crystal memory, IEEE Trans. Electron Dev. ED-43, 1553 (1996).

DOI: 10.1109/16.535349

Google Scholar

[8] P. Normand, D. Tsoukalas, E. Kapetanakis, J.A. Van Der Berg, D.G. Armour, J. Stoemenos, C. Vieu, Electrochem. Solid-State Lett. 1, 88 (1998).

Google Scholar

[9] J. von Borany, K.H. Heinig, R. Grotzschel, M. Klimenkov, M. Strobel, K.H. Stegemann, H.K. Thees, Microelectron. Eng. 48, 231 (1999).

DOI: 10.1016/s0167-9317(99)00377-9

Google Scholar

[10] Li-Ping You, C.L. Heng, S.Y. Ma, Z.C. Ma, W.H. Zong, G.G. Long Wu, J. Cryst Growth 212, 109 (2000).

Google Scholar

[11] L. Caristia, G. Nicotra, C. Bongiorno, N. Costa, S. Ravesi, S. Coffa, R. De Bastiani, M.G. Grimaldi, C. Spinella, The influence of hydrogen and nitrogen on the formation of Si nanoclusters embedded in sub-stoichiometric silicon oxide layers, Microelectron. Reliability. 47, 777-780 (2007).

DOI: 10.1016/j.microrel.2007.01.056

Google Scholar

[12] F. Iacona, G. Franzo, C. Spinella, Correlation between luminescence and structural properties of Si nanocrystals , J. Appl. Phys. 87, 1295 (2000).

DOI: 10.1063/1.372013

Google Scholar

[13] F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, F. Priolo, Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films, J. Appl. Phys. 95, 3723 (2004).

DOI: 10.1063/1.1664026

Google Scholar

[14] M. Ben-Chorin, and F. Koch, Nonlinear electrical transport in porous silicon, Phys. Rev. B 49, 2981, (1994).

DOI: 10.1103/physrevb.49.2981

Google Scholar

[15] H.W. Lau, O.K. an, and D.A. Trigg, Charge injection and tunneling mechanism of solid state reaction silicon nanocrystal film, Appl. Phys. Lett. 89, 113119 (2006).

DOI: 10.1063/1.2345257

Google Scholar

[16] D. Song, E. C. Cho, G. Conibeer, Y. Huang, and M.A. Green, Fabrication and electrical characteristics of Si nanocrystal/c-Si heterojunctions, Appl. Phys. Lett. 91, 123510 (2007).

DOI: 10.1063/1.2787883

Google Scholar

[17] B. Berghoff, S. Suckow, R. Rölver, B. Spangenberg, H. Kurz, A. Sologubenko and J. Mayer, Improved charge transport through Si based multiple quantum wells with substoichiometric SiOx barrier layers. J. Appl. Phys. 106, 083706 (2009).

DOI: 10.1063/1.3238294

Google Scholar

[18] M.A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).

Google Scholar

[19] N.F. Mott and E.A. Davis, Electronic Processes in Non-cristalline Materials, second ed., Oxford University Press, Oxford, (1979).

Google Scholar

[20] C. Godet, Variable range hopping revisited: the case of an exponential distribution of localized states. J. Non-Cryst. Solids. 333, 299–302 (2002).

DOI: 10.1016/s0022-3093(01)01008-0

Google Scholar

[21] K.C. Kao and W. Hwang, Electrical Transport in Solids (Pergamon, Oxford, 1981).

Google Scholar

[22] Y. Caglar, M. Caglar, S. Ilican, and F. Yakuphanoglu, Thermally stimulated current and space charge limited current mechanism in film of the gold/zinc oxide/gold type, Physica B 392, 99 (2007).

DOI: 10.1016/j.physb.2006.11.014

Google Scholar

[23] P. Mark and W. Helfrich, Space-Charge-Limited Currents in Organic Crystals, J. Appl. Phys. 33, 205 (1962).

DOI: 10.1063/1.1728487

Google Scholar

[24] V. Kumar, S.C. Jain, A.K. Kapoor, W. Geens, T. Aernauts, J. Poortmans, and R. Mertens, Trap density in conducting organic semiconductors determined from temperature dependence of J−V characteristics, J. Appl. Phys. 94, 1283 (2003).

DOI: 10.1063/1.1582552

Google Scholar

[25] S.M. Sze, Physics of semiconductor Devices (Wiley-Interscience, Hoboken, 2007).

Google Scholar