[1]
M. Liu, P. Guyot Sionnest, Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109 (2005), pp.22192-200.
DOI: 10.1021/jp054808n
Google Scholar
[2]
L.C. Cheng, J.H. Huang, H.M. Chen, T.C. Lai, K.Y. Yang, R.S. Liu, M. Hsiao, C.H. Chen, L.J. Her, D.P. Tsai, Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J Mater Chem 22 (2012).
DOI: 10.1039/c1jm13937a
Google Scholar
[3]
M.P. Neupane, S.J. Lee, I.S. Park, M.H. Lee, T.S. Bae, Y. Kuboki, M. Uo, F. Watari, Synthesis of gelatin-capped gold nanoparticles with variable gelatin concentration. J Nanopart Res 13 (2011), pp.491-8.
DOI: 10.1007/s11051-010-9971-9
Google Scholar
[4]
S. Trigari, A. Rindi, G. Margheri, S. Sottini, G. Dellepiane, E. Giorgetti, Synthesis and modelling of gold nanostars with tunable morphology and extinction spectrum. J Mater Chem 21 (2011), pp.6531-40.
DOI: 10.1039/c0jm04519e
Google Scholar
[5]
J. Spadavecchia, E. Apchain, M. Albéric, E. Fontan, I. Reiche, One-Step Synthesis of Collagen Hybrid Gold Nanoparticles and Formation on Egyptian-like Gold-Plated Archaeological Ivory. Angew Chem Int Edit 53 (2014), pp.8363-6.
DOI: 10.1002/anie.201403567
Google Scholar
[6]
C. Fasciani, M.J. Silvero, M.A. Anghel, G.A. Arguello, M.C. Becerra, J.C. Scaiano, Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability. J Am Chem Soc 136 (2014).
DOI: 10.1021/ja510435u
Google Scholar
[7]
M.R. Das, R.K. Sarma, S.C. Borah, R. Kumari, R. Saikia, A.B. Deshmukh, M.V. Shelke, P. Sengupta, S. Szunerits, R. Boukherroub, The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloid Surface B 105 (2013).
DOI: 10.1016/j.colsurfb.2012.12.033
Google Scholar
[8]
H.L. Wu, C.H. Chen, M.H. Huang, Seed-Mediated Synthesis of Branched Gold Nanocrystals Derived from the Side Growth of Pentagonal Bipyramids and the Formation of Gold Nanostars. Chem Mater 21 (2008), pp.110-4.
DOI: 10.1021/cm802257e
Google Scholar
[9]
D.H. Nguyen, J.H. Choi, Y.K. Joung, K.D. Park, Disulfide-crosslinked heparin-pluronic nanogels as a redox-sensitive nanocarrier for intracellular protein delivery. J Bioact Compat Polym 26 (2011), pp.287-300.
DOI: 10.1177/0883911511406031
Google Scholar
[10]
S. Kittler, C. Greulich, J. Diendorf, M. Köller, M. Epple, Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem Mater 22 (2010), pp.4548-54.
DOI: 10.1021/cm100023p
Google Scholar
[11]
Arnida, A. Malugin, H. Ghandehari, Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30 (2010), pp.212-7.
DOI: 10.1002/jat.1486
Google Scholar
[12]
N. Drogat, R. Granet, V. Sol, P. Krausz, One-pot silver nanoring synthesis. Nanoscale Res Lett 5 (2009), pp.566-9.
DOI: 10.1007/s11671-009-9505-5
Google Scholar
[13]
B.D. Du, D.V. Phu, N.N. Duy, N.T.K. Lan, V.T.K. Lang, N.V.K. Thanh, N.T.P. Phong, N.Q. Hien, Preparation of colloidal silver nanoparticles in poly(N-vinylpyrrolidone) by γ-irradiation. Journal of Experimental Nanoscience 3 (2008), pp.207-13.
DOI: 10.1080/17458080802353527
Google Scholar
[14]
L. Mulfinger, S.D. Solomon, M. Bahadory, A.V. Jeyarajasingam, S.A. Rutkowsky, C. Boritz, Synthesis and Study of Silver Nanoparticles. J Chem Educ 84 (2007), p.322.
DOI: 10.1021/ed084p322
Google Scholar
[15]
X. Zou, E. Ying, S. Dong, Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties. Nanotechnology 17 (2006), pp.4758-64.
DOI: 10.1088/0957-4484/17/18/038
Google Scholar
[16]
D.H. Nguyen, Y.K. Joung, J.H. Choi, H.T. Moon, K.D. Park, Targeting ligand-functionalized and redox-sensitive heparin-Pluronic nanogels for intracellular protein delivery. Biomedical Materials 6 (2011), p.055004.
DOI: 10.1088/1748-6041/6/5/055004
Google Scholar
[17]
D.H. Nguyen, W.B. Jin, J.H. Choi, S.L. Jung, K.D. Park, Bioreducible cross-linked Pluronic micelles: pH-triggered release of doxorubicin and folate-mediated cellular uptake. J Bioact Compat Polym 28 (2013), pp.341-54.
DOI: 10.1177/0883911513491642
Google Scholar
[18]
D. Nguyen, J. Lee, J. Choi, Y. Lee, J. Son, J. Bae, K. Lee, K. Park, Heparin nanogel-containing liposomes for intracellular RNase delivery. Macromol Res 23 (2015), pp.765-9.
DOI: 10.1007/s13233-015-3093-2
Google Scholar
[19]
D.H. Nguyen, J.S. Lee, J.W. Bae, J.H. Choi, Y. Lee, J.Y. Son, K.D. Park, Targeted doxorubicin nanotherapy strongly suppressing growth of multidrug resistant tumor in mice. International journal of pharmaceutics 495 (2015), pp.329-35.
DOI: 10.1016/j.ijpharm.2015.08.083
Google Scholar
[20]
O.S. Rabotyagova, P. Cebe, D.L. Kaplan, Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation. Mater Sci Eng C Mater Biol Appl 28 (2008), pp.1420-9.
DOI: 10.1016/j.msec.2008.03.012
Google Scholar
[21]
G. Wei, L. Wang, L. Sun, Y. Song, Y. Sun, C. Guo, T. Yang, Z. Li, Type I Collagen-Mediated Synthesis and Assembly of UV-Photoreduced Gold Nanoparticles and Their Application in Surface-Enhanced Raman Scattering. J Phys Chem C 111 (2007).
DOI: 10.1021/jp065868b
Google Scholar