[1]
L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Advanced Drug Delivery Reviews 56 (2004) 1649-1659.
DOI: 10.1016/j.addr.2004.02.014
Google Scholar
[2]
E.S. Kawasaki, A. Player, Nanotechnology, Nanomedicine and the Developmentof New Effective Therapies for Cancer, Nanomedicine 1 (2005) 101-109.
DOI: 10.1016/j.nano.2005.03.002
Google Scholar
[3]
M.M. Yallapu, F.S. Othman, E.T. Curtis, B.K. Gupta, M. Jaggi, S.C. Chauhan, Multifunctional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy, Biomaterials 32 (2011) 1890-(1905).
DOI: 10.1016/j.biomaterials.2010.11.028
Google Scholar
[4]
M. Namdeo, S. Saxena, R. Tankhiwale, M. Bajpai, Y.M. Mohan, S.K. Bajpai, Magnetic Nanoparticles for Drug Delivery Applications, Journal of Nanoscience and Nanotechnology 8 (2008) 3247-3271.
DOI: 10.1166/jnn.2008.399
Google Scholar
[5]
S.A. Shah, M.H. Asdi, M.U. Hashmi, M.F. Umar, S. Awan, Thermoresponsive Copolymer Coated MnFe2O4 Magnetic Nanoparticles for Hyperthermia Therapy and Controlled Drug Delivery, Materials Chemistry and Physics 137 (2012) 365-371.
DOI: 10.1016/j.matchemphys.2012.09.035
Google Scholar
[6]
C. Wilhelm, J.P. Fortin, F. Gazeau, Tumour Cell Toxicity of Intracellular Hyperthermia Mediated by Magnetic Nanoparticles, Journal of Nanoscience and Nanotechnology 7 (2007) 2933-2937.
DOI: 10.1166/jnn.2007.668
Google Scholar
[7]
N.D. Thorat, S.V. Otari, R.A. Bohara, H.M. Yadav, V.M. Khot, A. B. Salunkhe, M.R. Phdatre, A.I. Prasad, R.S. Ningthoujam, S.H. Pawar, Structured Superparamagnetic Nanoparticles for High Performance Mediator of Magnetic FluidHyperthermia: Synthesis, Colloidal Stability and Biocompatibility Evaluation. Materials Science and Engineering C 42 (2014).
DOI: 10.1016/j.msec.2014.06.016
Google Scholar
[8]
N. Kohler, C. Sun, A. Fichtenholtz, J. Gunn, C. Fang, M. Zhang, Methotrexate-Immobilised Poly (Ethylene Glycol) Magnetic Nanoparticles in MR Imaging and Drug Delivery, Small 2 (2006) 785-792.
DOI: 10.1002/smll.200600009
Google Scholar
[9]
C. Sun, J.S. Lee, M. Zhang, Magnetic Nanoparticles in MR Imaging and Drug Delivery, Advanced Drug Delivery Reviews 60 (2008) 1252-1265.
DOI: 10.1016/j.addr.2008.03.018
Google Scholar
[10]
I.J. Bruce, T. Sen, Surface Modification of Magnetic Nanoparticles with Alkoxysilanes and Their Application in Magnetic Bio-separations, Langmuir 21 (2005) 7029-7035.
DOI: 10.1021/la050553t
Google Scholar
[11]
C. Wilhelm, F. Gazeau, Universal Cell Labelling with Anionic Magnetic Nanoparticles, Biomaterials 29 (2008) 3161-3174.
DOI: 10.1016/j.biomaterials.2008.04.016
Google Scholar
[12]
T. Osaka, T. Matsunaga, T. Nakanishi, A. Arakaki, D. Niwa, H. Iida, Synthesis of Magnetic Nanoparticles and their Application to Bioassays, Analytical and Bioanalytical Chemistry 384 (2006) 593-600.
DOI: 10.1007/s00216-005-0255-7
Google Scholar
[13]
D.K. Kim, Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administrated into the rat brain, J. Magn. Magn. Mater. 225 (2001) 256–261.
Google Scholar
[14]
K. Cheng, S. Peng, C. Xu, S. Sun, Porous hollow Fe(3)O(4) nanoparticles for targeted delivery and controlled release of cisplatin, J. Am. Chem. Soc. 131 (2009) 10637– 10644.
DOI: 10.1021/ja903300f
Google Scholar
[15]
A. Makridis, K. Topouridou, M. Tziomaki, D. Sakellari, K. Simeonidis, M. Angelakeris, M.P. Yavropoulou, J. G. Yovos, O. Kalogirou, In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents, J. Mater. Chem. B 2 (2014).
DOI: 10.1039/c4tb01017e
Google Scholar
[16]
R. Hiergeist, W. Andra, N. Buske, R. Hergt, I. Hilger, U. Richter, W. Kaiser, Application of magnetite ferrofluids for hyperthermia, Journal of Magnetism and Magnetic Materials 201 (1999) 420-422.
DOI: 10.1016/s0304-8853(99)00145-6
Google Scholar
[17]
P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties, Materials Letters, 65 (9) 2011 1438–1440.
DOI: 10.1016/j.matlet.2011.02.026
Google Scholar
[18]
M. Rabanal, A. Várez, B. Levenfeld, J. Torralba, Magnetic properties of Mg-ferrite after milling process, J. Mater. Process. Technol., 143 (2003) 470-474.
DOI: 10.1016/s0924-0136(03)00464-3
Google Scholar
[19]
Q. Chen, A. J. Rondinone, B. C. Chakoumakos, Z. John Zhang, Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation, Journal of Magnetism and Magnetic Materials, 194(1) (1999) 1–7.
DOI: 10.1016/s0304-8853(98)00585-x
Google Scholar
[20]
N. Kaur, M. Kaur, Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles, Processing and Application of Ceramics 8(3) (2014) 137–143.
DOI: 10.2298/pac1403137k
Google Scholar
[21]
J. Chandradass, A. H. Jadhav, K. H. Kim, H. Kim, Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowders, Journal of Alloys and Compounds, 517 (2012) 164–169.
DOI: 10.1016/j.jallcom.2011.12.071
Google Scholar
[22]
T. Sasaki, S. Ohara, T. Naka, J. Vejpravova, V. Sechovsky, M. Umetsu, S. Takami, B. Jeyadevan, T. Adschiri, Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction, J. Supercrit. Fluids, 53(3) (2010) 92-94.
DOI: 10.1016/j.supflu.2009.11.005
Google Scholar
[23]
P. Tartaj, M. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C.J. Serna, The Preparation of Magnetic Nanoparticles for Applications in Biomedicine, Journal of Physics D: Applied Physics 36 (2003) R182-R197.
DOI: 10.1088/0022-3727/36/13/202
Google Scholar
[24]
M.R. Phadatare, V.M. Khot, A.B. Salunkhe, N.D. Thorat, S.H. Pawar, Studies on Polyethylene Glycol Coating on NiFe2O4 Nanoparticles for Biomedical Applications, Journal of Magnetism and Magnetic Materials 324 (2012) 770–772.
DOI: 10.1016/j.jmmm.2011.09.020
Google Scholar
[25]
V. Uskokovic, A. Kosak, M. Drofenik, Preparation of Silica-Coated Lanthanum Strontium Manganite Particles with Designable Curie Point for Application in Hyperthermia Treatments, International Journal of Applied Ceramic Technology 3 (2): (2006).
DOI: 10.1111/j.1744-7402.2006.02065.x
Google Scholar
[26]
A. Villanueva, P. de la Presa, J.M. Alonso, T. Rueda, A. Martınez, P. Crespo, M.P. Morales, M.A. Gonzalez-Fernandez, J. Valde´s, G. Rivero, Hyperthermia HeLa Cell Treatment with Silica-Coated Manganese Oxide Nanoparticles, The Journal of Physical Chemistry C 114 (2010).
DOI: 10.1021/jp907046f
Google Scholar
[27]
B. Mojic, K.P. Giannakopoulos, Z. Cvejic, V.V. Srdic, Silica coated ferrite nanoparticles: Influence of citrate functionalization procedure on final particle morphology. Ceramics International 38 (2012) 6635 – 6641.
DOI: 10.1016/j.ceramint.2012.05.050
Google Scholar
[28]
S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, A. Gedanken, Microwave-Assisted Synthesis of Nanocrystalline MgO and its use as a Bacteriocide. Advanced Functional Materials 15 (10) (2005) 1708-1715.
DOI: 10.1002/adfm.200500029
Google Scholar
[29]
K. Krishnamoorthy, G. Manivannan, S.J. Kim, K. Jeyasubramanian, M.J. Premanathan, Antibacterial Activity of MgO Nanoparticles Based on Lipid Peroxidation by Oxygen Vacancy, Journal of Nanoparticle Research 14 (2012) 1063-1068.
DOI: 10.1007/s11051-012-1063-6
Google Scholar
[30]
S. Kanagesan, M. Hashim, S. Tamilselvan, N.B. Alitheen, I. Ismail, G. Bahmanrokh, Cytotoxic Effect of Nanocrystalline MgFe2O4 Particles for Cancer Cure, Journal of Nanomaterials (2013) 1-8.
DOI: 10.1155/2013/865024
Google Scholar
[31]
V.M. Khot, A.B. Salunkhe, N.D. Thorat, M.R. Phadatare, S.H. Pawar, Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications, Journal of Magnetism and Magnetic Materials 332 (2013) 48–51.
DOI: 10.1016/j.jmmm.2012.12.010
Google Scholar
[32]
C.R. Vestal, Z.J. Zhang, Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles, J. Am. Chem. Soc., 125 (2003) 9828–9833.
DOI: 10.1021/ja035474n
Google Scholar
[33]
M. Mahdavi, F. Namvar, M.B. Ahmad, R. Mohamad, Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract, Molecules 18 (2013) 5954–596.
DOI: 10.3390/molecules18055954
Google Scholar
[34]
C.O. Ehi-Eromosele, B.I. Ita, E.E.J. Iweala, Synthesis, Microstructure and Magnetic Properties of Nanocrystalline MgFe2O4 Particles: Effect of Mixture of Fuels and Sintering Temperature, Science of Sintering (Accepted for publication).
DOI: 10.2298/sos1602221o
Google Scholar
[35]
W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in micron size range, J. Colloid Interface Sci., 26 (1968) 62–69.
DOI: 10.1016/0021-9797(68)90272-5
Google Scholar
[36]
J. Choi, J.C. Kim, Y.B. Lee, I.S. Kim, Y.K. Park, N.H. Hur, Fabrication of Silica-Coated Magnetic Nanoparticles with Highly Photoluminescent Lanthanide Probes. Chemical Communications 16 (2007) 1644-1646.
DOI: 10.1039/b617608a
Google Scholar
[37]
A.B. Salunkhe, V.M. Khot, N.D. Thorat, M.R. Phadatare, C.I. Sathish, D.S. Dhawale, S.H. Pawar, Polyvinyl Alcohol Functionalized Cobalt Ferrite Nanoparticles for Biomedical Applications, Applied Surface Science 264 (2013) 598-604.
DOI: 10.1016/j.apsusc.2012.10.073
Google Scholar
[38]
B. Zhou, Y.W. Zhang, C.S. Liao, C.H. Yan, L.Y. Chen, S.Y. Wang, Rare Earth Mediated Magnetism and Magneto-Optical Kerr Effects in Nanocrystalline CoFeMn0. 9RE0. 1O4 Thin Films, Journal of Magnetism and Magnetic Materials 280 (2004) 327–333.
DOI: 10.1016/j.jmmm.2004.03.031
Google Scholar
[39]
H.M. Zaki, H.A. Dawoud, Far-infrared Spectra for Copper–Zinc Mixed Ferrites, Physica B 405 (2010) 4476–4479.
DOI: 10.1016/j.physb.2010.08.018
Google Scholar
[40]
A. Venkateswara Rao, P.B. Wagh, D. Haranath, P.P. Risbud, S.D. Kumbhare, Influence of Temperature on the Physical Properties of TEOS Silica Xerogels, Ceramic International 25 (6): (1999) 505–509.
DOI: 10.1016/s0272-8842(97)00085-0
Google Scholar
[41]
K.H. Wu, W.C. Huang, Effect of Varying the Acid to Metal Ion Ratio R on the Structural and Magnetic Properties of SiO2-Doped Ni–Zn Ferrite, Journal of Solid State Chemistry 177 (2004) 3052–3057.
DOI: 10.1016/j.jssc.2004.05.019
Google Scholar
[42]
B. Topuz, D. Şimşek, M. Çiftçioğlu, Preparation of monodisperse silica spheres and determination of their densification behaviour. Ceramics International 41(1) (2015) 43-52.
DOI: 10.1016/j.ceramint.2014.07.112
Google Scholar
[43]
S. Zellmer, M. Lindenau, S. Michel, G. Garnweitner, C. Schilde, Influence of surface modification on structure formation and micromechanical properties of spray-dried silica aggregates. J Colloid Interface Sci. 464 (2016) 183-190.
DOI: 10.1016/j.jcis.2015.11.028
Google Scholar
[44]
C.P. Liu, M.W. Li, Z. Cui, J.R. Huang, Y.L. Tian, T. Lin, W.B. Mi, Comparative study of magnesium ferrite nanocrystallites prepared by sol–gel and coprecipitation methods, J. Mater. Sci. 42 (2007) 6133-6138.
DOI: 10.1007/s10853-006-1070-z
Google Scholar
[45]
V.M. Khot, A.B. Salunkhe, M.R. Phadatare, S.H. Pawar, Formation, Microstructure and Magnetic Properties of Nanocrystalline MgFe2O4, Materials Chemistry and Physics 132 (2012) 782–787.
DOI: 10.1016/j.matchemphys.2011.12.012
Google Scholar
[46]
A.B. Salunkhe, V.M. Khot, M.R. Phadatare, N.D. Thorat, R.S. Joshi, H.M. Yadav, S.H. Pawar, Low Temperature Combustion Synthesis and Magnetostructural Properties of Co-Mn Nanoferrites, Journal of Magnetism and Magnetic Materials 352 (2014) 91-98.
DOI: 10.1016/j.jmmm.2013.09.020
Google Scholar
[47]
M. Rahimi, P. Kameli, M. Ranjbar, H. Salamati, The Effect of Polyvinyl Alcohol (PVA) Coating on Structural, Magnetic Properties and Spin Dynamics of Ni0. 3Zn0. 7Fe2O4 Ferrite Nanoparticles, Journal of Magnetism and Magnetic Materials 347 (2013).
DOI: 10.1016/j.jmmm.2013.08.004
Google Scholar
[48]
E. Umut, Surface Modification of Nanoparticles used in Biomedical Applications In: Modern Surface Engineering Treatments, Ed. by Mahmood Aliofkhazraei, InTech (2013) 185-208.
DOI: 10.5772/55746
Google Scholar
[49]
N.D. Thorat, V.M. Khot, A.B. Salunkhe, A. Prasad, R.S. Ningthoujam, S.H. Pawar, Surface Functionalized LSMO Nanoparticles with Improved ColloidalStability for Hyperthermia Applications, Journal of Physics D: Applied Physics 46 105003 (2013) 1-11.
DOI: 10.1088/0022-3727/46/10/105003
Google Scholar
[50]
S.V. Jadhav, D.S. Nikam, V.M. Khot, S.S. Mali, C.K. Hong, S.H. Pawar, PVA and PEG Functionalised LSMO Nanoparticles for Magnetic Fluid Hyperthermia Application, Materials Characterization 102 (2015) 209–220.
DOI: 10.1016/j.matchar.2015.03.001
Google Scholar
[51]
P. Smirnov, Cellular Magnetic Resonance Imaging using Superparamagnetic Anionic Iron Oxide Nanoparticles: Applications to In Vivo Trafficking of Lymphocytes and Cell-Based Anticancer Therapy, Methods in Molecular Biology 512 (2009) 333-353.
DOI: 10.1007/978-1-60327-530-9_19
Google Scholar