Silica Functionalized Magnesium Ferrite Nanocomposites for Potential Biomedical Applications: Preparation, Characterization and Enhanced Colloidal Stability Studies

Article Preview

Abstract:

Magnetic nanocomposite material composed of silica coated MgFe2O4 for potential biomedical applications were synthesized by a two-step chemical method including solution combustion synthesis, followed by silica coatings of the ferrite nanoparticles. The effects of silica coatings on the structural, morphological and magnetic properties were comprehensively investigated using powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), energy dispersive absorption x-ray (EDAX), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis and differential thermal analysis (TG–DTA) and vibrating sample magnetometer (VSM). The colloidal behaviour of coated MNPs in physiological saline medium like water or phosphate buffer saline (PBS) was also studied by zeta potential measurements. The XRD patterns indicate that the crystalline structure is single cubic spinel phase and the spinel structure is retained after silica coating. Also, after silica coating, the crystallite size (from Scherrer formula) decreases from 53 to 47 nm. The magnetic results show that MgFe2O4 MNPs (bare and silica coated) is ferrimagnetic at room temperature. Zeta potential studies revealed that there is enhanced colloidal stability of MgFe2O4 MNPs after silica coating in aqueous media which is an applicable potential in biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-157

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Advanced Drug Delivery Reviews 56 (2004) 1649-1659.

DOI: 10.1016/j.addr.2004.02.014

Google Scholar

[2] E.S. Kawasaki, A. Player, Nanotechnology, Nanomedicine and the Developmentof New Effective Therapies for Cancer, Nanomedicine 1 (2005) 101-109.

DOI: 10.1016/j.nano.2005.03.002

Google Scholar

[3] M.M. Yallapu, F.S. Othman, E.T. Curtis, B.K. Gupta, M. Jaggi, S.C. Chauhan, Multifunctional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy, Biomaterials 32 (2011) 1890-(1905).

DOI: 10.1016/j.biomaterials.2010.11.028

Google Scholar

[4] M. Namdeo, S. Saxena, R. Tankhiwale, M. Bajpai, Y.M. Mohan, S.K. Bajpai, Magnetic Nanoparticles for Drug Delivery Applications, Journal of Nanoscience and Nanotechnology 8 (2008) 3247-3271.

DOI: 10.1166/jnn.2008.399

Google Scholar

[5] S.A. Shah, M.H. Asdi, M.U. Hashmi, M.F. Umar, S. Awan, Thermoresponsive Copolymer Coated MnFe2O4 Magnetic Nanoparticles for Hyperthermia Therapy and Controlled Drug Delivery, Materials Chemistry and Physics 137 (2012) 365-371.

DOI: 10.1016/j.matchemphys.2012.09.035

Google Scholar

[6] C. Wilhelm, J.P. Fortin, F. Gazeau, Tumour Cell Toxicity of Intracellular Hyperthermia Mediated by Magnetic Nanoparticles, Journal of Nanoscience and Nanotechnology 7 (2007) 2933-2937.

DOI: 10.1166/jnn.2007.668

Google Scholar

[7] N.D. Thorat, S.V. Otari, R.A. Bohara, H.M. Yadav, V.M. Khot, A. B. Salunkhe, M.R. Phdatre, A.I. Prasad, R.S. Ningthoujam, S.H. Pawar, Structured Superparamagnetic Nanoparticles for High Performance Mediator of Magnetic FluidHyperthermia: Synthesis, Colloidal Stability and Biocompatibility Evaluation. Materials Science and Engineering C 42 (2014).

DOI: 10.1016/j.msec.2014.06.016

Google Scholar

[8] N. Kohler, C. Sun, A. Fichtenholtz, J. Gunn, C. Fang, M. Zhang, Methotrexate-Immobilised Poly (Ethylene Glycol) Magnetic Nanoparticles in MR Imaging and Drug Delivery, Small 2 (2006) 785-792.

DOI: 10.1002/smll.200600009

Google Scholar

[9] C. Sun, J.S. Lee, M. Zhang, Magnetic Nanoparticles in MR Imaging and Drug Delivery, Advanced Drug Delivery Reviews 60 (2008) 1252-1265.

DOI: 10.1016/j.addr.2008.03.018

Google Scholar

[10] I.J. Bruce, T. Sen, Surface Modification of Magnetic Nanoparticles with Alkoxysilanes and Their Application in Magnetic Bio-separations, Langmuir 21 (2005) 7029-7035.

DOI: 10.1021/la050553t

Google Scholar

[11] C. Wilhelm, F. Gazeau, Universal Cell Labelling with Anionic Magnetic Nanoparticles, Biomaterials 29 (2008) 3161-3174.

DOI: 10.1016/j.biomaterials.2008.04.016

Google Scholar

[12] T. Osaka, T. Matsunaga, T. Nakanishi, A. Arakaki, D. Niwa, H. Iida, Synthesis of Magnetic Nanoparticles and their Application to Bioassays, Analytical and Bioanalytical Chemistry 384 (2006) 593-600.

DOI: 10.1007/s00216-005-0255-7

Google Scholar

[13] D.K. Kim, Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administrated into the rat brain, J. Magn. Magn. Mater. 225 (2001) 256–261.

Google Scholar

[14] K. Cheng, S. Peng, C. Xu, S. Sun, Porous hollow Fe(3)O(4) nanoparticles for targeted delivery and controlled release of cisplatin, J. Am. Chem. Soc. 131 (2009) 10637– 10644.

DOI: 10.1021/ja903300f

Google Scholar

[15] A. Makridis, K. Topouridou, M. Tziomaki, D. Sakellari, K. Simeonidis, M. Angelakeris, M.P. Yavropoulou, J. G. Yovos, O. Kalogirou, In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents, J. Mater. Chem. B 2 (2014).

DOI: 10.1039/c4tb01017e

Google Scholar

[16] R. Hiergeist, W. Andra, N. Buske, R. Hergt, I. Hilger, U. Richter, W. Kaiser, Application of magnetite ferrofluids for hyperthermia, Journal of Magnetism and Magnetic Materials 201 (1999) 420-422.

DOI: 10.1016/s0304-8853(99)00145-6

Google Scholar

[17] P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties, Materials Letters, 65 (9) 2011 1438–1440.

DOI: 10.1016/j.matlet.2011.02.026

Google Scholar

[18] M. Rabanal, A. Várez, B. Levenfeld, J. Torralba, Magnetic properties of Mg-ferrite after milling process, J. Mater. Process. Technol., 143 (2003) 470-474.

DOI: 10.1016/s0924-0136(03)00464-3

Google Scholar

[19] Q. Chen, A. J. Rondinone, B. C. Chakoumakos, Z. John Zhang, Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation, Journal of Magnetism and Magnetic Materials, 194(1) (1999) 1–7.

DOI: 10.1016/s0304-8853(98)00585-x

Google Scholar

[20] N. Kaur, M. Kaur, Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles, Processing and Application of Ceramics 8(3) (2014) 137–143.

DOI: 10.2298/pac1403137k

Google Scholar

[21] J. Chandradass, A. H. Jadhav, K. H. Kim, H. Kim, Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowders, Journal of Alloys and Compounds, 517 (2012) 164–169.

DOI: 10.1016/j.jallcom.2011.12.071

Google Scholar

[22] T. Sasaki, S. Ohara, T. Naka, J. Vejpravova, V. Sechovsky, M. Umetsu, S. Takami, B. Jeyadevan, T. Adschiri, Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction, J. Supercrit. Fluids, 53(3) (2010) 92-94.

DOI: 10.1016/j.supflu.2009.11.005

Google Scholar

[23] P. Tartaj, M. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C.J. Serna, The Preparation of Magnetic Nanoparticles for Applications in Biomedicine, Journal of Physics D: Applied Physics 36 (2003) R182-R197.

DOI: 10.1088/0022-3727/36/13/202

Google Scholar

[24] M.R. Phadatare, V.M. Khot, A.B. Salunkhe, N.D. Thorat, S.H. Pawar, Studies on Polyethylene Glycol Coating on NiFe2O4 Nanoparticles for Biomedical Applications, Journal of Magnetism and Magnetic Materials 324 (2012) 770–772.

DOI: 10.1016/j.jmmm.2011.09.020

Google Scholar

[25] V. Uskokovic, A. Kosak, M. Drofenik, Preparation of Silica-Coated Lanthanum Strontium Manganite Particles with Designable Curie Point for Application in Hyperthermia Treatments, International Journal of Applied Ceramic Technology 3 (2): (2006).

DOI: 10.1111/j.1744-7402.2006.02065.x

Google Scholar

[26] A. Villanueva, P. de la Presa, J.M. Alonso, T. Rueda, A. Martınez, P. Crespo, M.P. Morales, M.A. Gonzalez-Fernandez, J. Valde´s, G. Rivero, Hyperthermia HeLa Cell Treatment with Silica-Coated Manganese Oxide Nanoparticles, The Journal of Physical Chemistry C 114 (2010).

DOI: 10.1021/jp907046f

Google Scholar

[27] B. Mojic, K.P. Giannakopoulos, Z. Cvejic, V.V. Srdic, Silica coated ferrite nanoparticles: Influence of citrate functionalization procedure on final particle morphology. Ceramics International 38 (2012) 6635 – 6641.

DOI: 10.1016/j.ceramint.2012.05.050

Google Scholar

[28] S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, A. Gedanken, Microwave-Assisted Synthesis of Nanocrystalline MgO and its use as a Bacteriocide. Advanced Functional Materials 15 (10) (2005) 1708-1715.

DOI: 10.1002/adfm.200500029

Google Scholar

[29] K. Krishnamoorthy, G. Manivannan, S.J. Kim, K. Jeyasubramanian, M.J. Premanathan, Antibacterial Activity of MgO Nanoparticles Based on Lipid Peroxidation by Oxygen Vacancy, Journal of Nanoparticle Research 14 (2012) 1063-1068.

DOI: 10.1007/s11051-012-1063-6

Google Scholar

[30] S. Kanagesan, M. Hashim, S. Tamilselvan, N.B. Alitheen, I. Ismail, G. Bahmanrokh, Cytotoxic Effect of Nanocrystalline MgFe2O4 Particles for Cancer Cure, Journal of Nanomaterials (2013) 1-8.

DOI: 10.1155/2013/865024

Google Scholar

[31] V.M. Khot, A.B. Salunkhe, N.D. Thorat, M.R. Phadatare, S.H. Pawar, Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications, Journal of Magnetism and Magnetic Materials 332 (2013) 48–51.

DOI: 10.1016/j.jmmm.2012.12.010

Google Scholar

[32] C.R. Vestal, Z.J. Zhang, Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles, J. Am. Chem. Soc., 125 (2003) 9828–9833.

DOI: 10.1021/ja035474n

Google Scholar

[33] M. Mahdavi, F. Namvar, M.B. Ahmad, R. Mohamad, Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract, Molecules 18 (2013) 5954–596.

DOI: 10.3390/molecules18055954

Google Scholar

[34] C.O. Ehi-Eromosele, B.I. Ita, E.E.J. Iweala, Synthesis, Microstructure and Magnetic Properties of Nanocrystalline MgFe2O4 Particles: Effect of Mixture of Fuels and Sintering Temperature, Science of Sintering (Accepted for publication).

DOI: 10.2298/sos1602221o

Google Scholar

[35] W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in micron size range, J. Colloid Interface Sci., 26 (1968) 62–69.

DOI: 10.1016/0021-9797(68)90272-5

Google Scholar

[36] J. Choi, J.C. Kim, Y.B. Lee, I.S. Kim, Y.K. Park, N.H. Hur, Fabrication of Silica-Coated Magnetic Nanoparticles with Highly Photoluminescent Lanthanide Probes. Chemical Communications 16 (2007) 1644-1646.

DOI: 10.1039/b617608a

Google Scholar

[37] A.B. Salunkhe, V.M. Khot, N.D. Thorat, M.R. Phadatare, C.I. Sathish, D.S. Dhawale, S.H. Pawar, Polyvinyl Alcohol Functionalized Cobalt Ferrite Nanoparticles for Biomedical Applications, Applied Surface Science 264 (2013) 598-604.

DOI: 10.1016/j.apsusc.2012.10.073

Google Scholar

[38] B. Zhou, Y.W. Zhang, C.S. Liao, C.H. Yan, L.Y. Chen, S.Y. Wang, Rare Earth Mediated Magnetism and Magneto-Optical Kerr Effects in Nanocrystalline CoFeMn0. 9RE0. 1O4 Thin Films, Journal of Magnetism and Magnetic Materials 280 (2004) 327–333.

DOI: 10.1016/j.jmmm.2004.03.031

Google Scholar

[39] H.M. Zaki, H.A. Dawoud, Far-infrared Spectra for Copper–Zinc Mixed Ferrites, Physica B 405 (2010) 4476–4479.

DOI: 10.1016/j.physb.2010.08.018

Google Scholar

[40] A. Venkateswara Rao, P.B. Wagh, D. Haranath, P.P. Risbud, S.D. Kumbhare, Influence of Temperature on the Physical Properties of TEOS Silica Xerogels, Ceramic International 25 (6): (1999) 505–509.

DOI: 10.1016/s0272-8842(97)00085-0

Google Scholar

[41] K.H. Wu, W.C. Huang, Effect of Varying the Acid to Metal Ion Ratio R on the Structural and Magnetic Properties of SiO2-Doped Ni–Zn Ferrite, Journal of Solid State Chemistry 177 (2004) 3052–3057.

DOI: 10.1016/j.jssc.2004.05.019

Google Scholar

[42] B. Topuz, D. Şimşek, M. Çiftçioğlu, Preparation of monodisperse silica spheres and determination of their densification behaviour. Ceramics International 41(1) (2015) 43-52.

DOI: 10.1016/j.ceramint.2014.07.112

Google Scholar

[43] S. Zellmer, M. Lindenau, S. Michel, G. Garnweitner, C. Schilde, Influence of surface modification on structure formation and micromechanical properties of spray-dried silica aggregates. J Colloid Interface Sci. 464 (2016) 183-190.

DOI: 10.1016/j.jcis.2015.11.028

Google Scholar

[44] C.P. Liu, M.W. Li, Z. Cui, J.R. Huang, Y.L. Tian, T. Lin, W.B. Mi, Comparative study of magnesium ferrite nanocrystallites prepared by sol–gel and coprecipitation methods, J. Mater. Sci. 42 (2007) 6133-6138.

DOI: 10.1007/s10853-006-1070-z

Google Scholar

[45] V.M. Khot, A.B. Salunkhe, M.R. Phadatare, S.H. Pawar, Formation, Microstructure and Magnetic Properties of Nanocrystalline MgFe2O4, Materials Chemistry and Physics 132 (2012) 782–787.

DOI: 10.1016/j.matchemphys.2011.12.012

Google Scholar

[46] A.B. Salunkhe, V.M. Khot, M.R. Phadatare, N.D. Thorat, R.S. Joshi, H.M. Yadav, S.H. Pawar, Low Temperature Combustion Synthesis and Magnetostructural Properties of Co-Mn Nanoferrites, Journal of Magnetism and Magnetic Materials 352 (2014) 91-98.

DOI: 10.1016/j.jmmm.2013.09.020

Google Scholar

[47] M. Rahimi, P. Kameli, M. Ranjbar, H. Salamati, The Effect of Polyvinyl Alcohol (PVA) Coating on Structural, Magnetic Properties and Spin Dynamics of Ni0. 3Zn0. 7Fe2O4 Ferrite Nanoparticles, Journal of Magnetism and Magnetic Materials 347 (2013).

DOI: 10.1016/j.jmmm.2013.08.004

Google Scholar

[48] E. Umut, Surface Modification of Nanoparticles used in Biomedical Applications In: Modern Surface Engineering Treatments, Ed. by Mahmood Aliofkhazraei, InTech (2013) 185-208.

DOI: 10.5772/55746

Google Scholar

[49] N.D. Thorat, V.M. Khot, A.B. Salunkhe, A. Prasad, R.S. Ningthoujam, S.H. Pawar, Surface Functionalized LSMO Nanoparticles with Improved ColloidalStability for Hyperthermia Applications, Journal of Physics D: Applied Physics 46 105003 (2013) 1-11.

DOI: 10.1088/0022-3727/46/10/105003

Google Scholar

[50] S.V. Jadhav, D.S. Nikam, V.M. Khot, S.S. Mali, C.K. Hong, S.H. Pawar, PVA and PEG Functionalised LSMO Nanoparticles for Magnetic Fluid Hyperthermia Application, Materials Characterization 102 (2015) 209–220.

DOI: 10.1016/j.matchar.2015.03.001

Google Scholar

[51] P. Smirnov, Cellular Magnetic Resonance Imaging using Superparamagnetic Anionic Iron Oxide Nanoparticles: Applications to In Vivo Trafficking of Lymphocytes and Cell-Based Anticancer Therapy, Methods in Molecular Biology 512 (2009) 333-353.

DOI: 10.1007/978-1-60327-530-9_19

Google Scholar