[1]
R. Weissleder, A clearer vision for in vivo imaging, Nat. Biotechnol. 19 (2001) 316.
Google Scholar
[2]
L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. 100 (2003).
DOI: 10.1073/pnas.2232479100
Google Scholar
[3]
X.H. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc. 128 (2006) 2115-2120.
DOI: 10.1021/ja057254a
Google Scholar
[4]
T.S. Hauck, T.L. Jennings, T. Yatsenko, J.C. Kumaradas, W.C.W. Chan, Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia, Adv. Mater. 20 (2008) 3832-3838.
DOI: 10.1002/adma.200800921
Google Scholar
[5]
K. Dong, Z. Liu, Z. Li, J. Ren, X. Qu, Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo, Adv. Mater. 25 (2013) 4452-4458.
DOI: 10.1002/adma.201301232
Google Scholar
[6]
W.Y. Yin, L. Yan, J. Yu, G. Tian, L.J. Zhou, X.P. Zheng, X. Zhang, Y. Yong, J. Li, Z.J. Gu, Y.L. Zhao, High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy, ACS Nano 8 (2014).
DOI: 10.1021/nn501647j
Google Scholar
[7]
K.C. Hribar, Y.S. Choi, M. Ondeck, A.J. Engler, S.C. Chen, Digital plasmonic patterning for localized tuning of hydrogel stiffness, Adv. Funct. Mater. 24 (2014) 4922-4296.
DOI: 10.1002/adfm.201400274
Google Scholar
[8]
M.S. Yavuz, Y. Cheng, J. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K.H. Song, A.G. Schwartz, L.V. Wang, Y. Xia, Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nat. Mater. 8 (2009) 935-939.
DOI: 10.1038/nmat2564
Google Scholar
[9]
N.W. Kam, M. O'Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 11600-11605.
DOI: 10.1073/pnas.0502680102
Google Scholar
[10]
C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy, Nano Lett. 11 (2011) 2560-2566.
DOI: 10.1021/nl201400z
Google Scholar
[11]
X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties, Nat. Nanotechnol. 6 (2011) 28-32.
DOI: 10.1038/nnano.2010.235
Google Scholar
[12]
D.J. Naczynski, M.C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C.M. Roth, R.E. Riman, P.V. Moghe, Rare-earth-doped biological composites as in vivo shortwave infrared reporters, Nat. Commun. 2199 (2013).
DOI: 10.1038/ncomms3199
Google Scholar
[13]
L.M. Maestro, E. Camarillo, J.A. Sánchez-Gil, R. Rodríguez-Oliveros, J. Ramiro-Bargueño, A.J. Caamaño, F. Jaque, J.G. Solé, D. Jaque, Gold nanorods for optimized photothermal therapy: the influence of irradiating in the first and second biological windows, RSC Adv. 4 (2014).
DOI: 10.1039/c4ra08956a
Google Scholar
[14]
A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm, J. Phys. D: Appl. Phys. 38 (2005) 2543.
DOI: 10.1088/0022-3727/38/15/004
Google Scholar
[15]
X. Ding, C.H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, J. Jiang, Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window, J. Am. Chem. Soc. 136 (2014).
DOI: 10.1021/ja508641z
Google Scholar
[16]
M.F. Tsai, S.H. Chang, F.Y. Cheng, V. Shanmugam, Y.S. Cheng, C.H. Su, C.S. Yeh, Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy, ACS Nano 7 (2013) 5330-5342.
DOI: 10.1021/nn401187c
Google Scholar
[17]
C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, S. Li, Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent, Biomaterials 52 (2015) 407-416.
DOI: 10.1016/j.biomaterials.2015.02.054
Google Scholar
[18]
X. Huang, S. Neretina, M.A. EI-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications, Adv. Mater. 21 (2009) 4880-4910.
DOI: 10.1002/adma.200802789
Google Scholar
[19]
E.B. Dickerson, E.C. Dreaden, X.H. Huang, I.H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, M.A. EI-Sayed, Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer Lett. 269 (2008).
DOI: 10.1016/j.canlet.2008.04.026
Google Scholar
[20]
E. Yasun, C. Li, I. Barut, D. Janvier, L. Qiu, C. Cui, W. Tan, BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods, Nanoscale 7 (2015) 10240-10248.
DOI: 10.1039/c5nr01704a
Google Scholar
[21]
L. Wang, Y. Liu, W. Li, X. Jiang, Y. Ji, X. Wu, L. Xu, Y. Qiu, K. Zhao, T. Wei, Y. Li, Y. Zhao, C. Chen, Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy, Nano Lett. 11 (2011) 772-780.
DOI: 10.1021/nl103992v
Google Scholar
[22]
H. Huang, J. -H. Wang, W. Jin, P. Li, M. Chen, H. -H. Xie, X. -F. Yu, H. Wang, Z. Dai, X. Xiao, P.K. Chu, Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance, Small 10 (2014).
DOI: 10.1002/smll.201400860
Google Scholar
[23]
W.Q. Li, C.Y. Sun, F. Wang, Y.C. Wang, Y.W. Zhai, M. Liang, W. Liu, Z. Liu, J. Wang, F. Sun, Achieving a new controllable male contraception by the photothermal effect of gold nanorods, Nano Lett. 13 (2013) 2477-2484.
DOI: 10.1021/nl400536d
Google Scholar
[24]
J. -H. Wang, H. Huang, D. -Q. Zhang, M. Chen, Y. -F. Zhang, X. -F. Yu, L. Zhou, Q. -Q. Wang, Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon and fluorescence, Nano Res. (2015) DOI: 10. 1007/s12274-015-0761-7.
DOI: 10.1007/s12274-015-0761-7
Google Scholar
[25]
P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, J. Phys. Chem. B 110 (2006).
DOI: 10.1021/jp057170o
Google Scholar
[26]
J. -H. Wang, B. Wang, Q. Liu, Q. Li, H. Huang, L. Song, T. -Y. Sun, H. Wang, X. -F. Yu, C. Li, P.K. Chu, Bimodal optical diagnostics of oral cancer based on rose bengal conjugated gold nanorod platform, Biomaterials 34 (2013) 4274-4283.
DOI: 10.1016/j.biomaterials.2013.02.012
Google Scholar
[27]
Y. Xu, J. Wang, X. Li, Y. Liu, L. Dai, X. Wu, C. Chen., Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia, Biomaterials 35 (2014) 4667-4677.
DOI: 10.1016/j.biomaterials.2014.02.035
Google Scholar
[28]
B. Wang, J. -H. Wang, Q. Liu, H. Huang, M. Chen, K. Li, X. -F. Yu, P.K. Chu, Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies, Biomaterials 35 (2014) 1954-(1966).
DOI: 10.1016/j.biomaterials.2013.11.066
Google Scholar
[29]
R. Mooney, L. Roma, D. Zhao, D.V. Haute, E. Garcia, S.U. Kim, A.J. Annala, K.S. Aboody, J.M. Berlin, Neural stem cell-mediated delivery of gold nanorods improves photothermal therapy, ACS Nano 8 (2014) 12450-12460.
DOI: 10.1021/nn505147w
Google Scholar
[30]
X. -M. Zhu, C. Fang, H. Jia, Y. Huang, C.H. Cheng, C. -H. Ko, Z. Chen, J. Wang, Y. -X. J. Wang, Cellular uptake behavior, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings, Nanoscale 6 (2014) 11462-11472.
DOI: 10.1039/c4nr03865g
Google Scholar
[31]
X. Ye, C. Zheng, J. Chen, Y. Gao, C.B. Murray, Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods, Nano Lett. 13 (2013) 765-771.
DOI: 10.1021/nl304478h
Google Scholar
[32]
L. Feng, X. Wu, L. Ren, Y. Xiang, W. He, K. Zhang, W. Zhou and S. Xie, Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth, Chem. -Eur. J. 14 (2008) 9764-9771.
DOI: 10.1002/chem.200800544
Google Scholar
[33]
Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, C. Chen, Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods, Biomaterials 31 (2010) 7606-7619.
DOI: 10.1016/j.biomaterials.2010.06.051
Google Scholar
[34]
Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang, Gold nanorods: electrochemical synthesis and optical properties, J. Phys. Chem. B 101 (1997) 6661-6664.
DOI: 10.1021/jp971656q
Google Scholar
[35]
N.R. Jana, L. Gearheart, C.J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater. 13 (2001) 1389-1393.
DOI: 10.1002/1521-4095(200109)13:18<1389::aid-adma1389>3.0.co;2-f
Google Scholar
[36]
B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater. 15 (2003) 1957-(1962).
DOI: 10.1021/cm020732l
Google Scholar
[37]
D.K. Roper, W. Ahn, M. Hoepfner, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles, J. Phys. Chem. C. 111 (2007) 3636-3641.
DOI: 10.1021/jp064341w
Google Scholar