Synthesis of Long Gold Nanorods as an Efficient Photothermal Agent in the Second Near-Infrared Window

Article Preview

Abstract:

To date, intensive efforts have been devoted in the synthesis of various nanomaterials as photothermal agent in the first near-infrared (NIR) window (650-950 nm). Although the NIR-II window (1000-1350 nm) is recognized to offer more efficient tissue penetration and higher permissible exposure to excitation light, the corresponding photothermal agents have been scant. Here, we report a binary surfactant seeded growth method for high yield synthesis of long AuNRs (LAuNRs) as an efficient NIR-II photothermal agent. The as-synthesized LAuNRs with aspect ratio of 6.7 shows strong surface plasmon resonance band at 1064 nm, and demonstrates high photothermal conversion efficiency and excellent photothermal stability. When the AuNRs aqueous dispersion is covered with a 6 mm thick pork tissue as a model of biological tissues, its temperature can still be increased by 13.1 °C under a 1064 nm 1.0 W/cm2 laser irradiation. These results demonstrate the promising potential of the LAuNRs as an efficient photothermal agent in the NIR-II window.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-189

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Weissleder, A clearer vision for in vivo imaging, Nat. Biotechnol. 19 (2001) 316.

Google Scholar

[2] L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. 100 (2003).

DOI: 10.1073/pnas.2232479100

Google Scholar

[3] X.H. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc. 128 (2006) 2115-2120.

DOI: 10.1021/ja057254a

Google Scholar

[4] T.S. Hauck, T.L. Jennings, T. Yatsenko, J.C. Kumaradas, W.C.W. Chan, Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia, Adv. Mater. 20 (2008) 3832-3838.

DOI: 10.1002/adma.200800921

Google Scholar

[5] K. Dong, Z. Liu, Z. Li, J. Ren, X. Qu, Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo, Adv. Mater. 25 (2013) 4452-4458.

DOI: 10.1002/adma.201301232

Google Scholar

[6] W.Y. Yin, L. Yan, J. Yu, G. Tian, L.J. Zhou, X.P. Zheng, X. Zhang, Y. Yong, J. Li, Z.J. Gu, Y.L. Zhao, High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy, ACS Nano 8 (2014).

DOI: 10.1021/nn501647j

Google Scholar

[7] K.C. Hribar, Y.S. Choi, M. Ondeck, A.J. Engler, S.C. Chen, Digital plasmonic patterning for localized tuning of hydrogel stiffness, Adv. Funct. Mater. 24 (2014) 4922-4296.

DOI: 10.1002/adfm.201400274

Google Scholar

[8] M.S. Yavuz, Y. Cheng, J. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K.H. Song, A.G. Schwartz, L.V. Wang, Y. Xia, Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nat. Mater. 8 (2009) 935-939.

DOI: 10.1038/nmat2564

Google Scholar

[9] N.W. Kam, M. O'Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 11600-11605.

DOI: 10.1073/pnas.0502680102

Google Scholar

[10] C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy, Nano Lett. 11 (2011) 2560-2566.

DOI: 10.1021/nl201400z

Google Scholar

[11] X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties, Nat. Nanotechnol. 6 (2011) 28-32.

DOI: 10.1038/nnano.2010.235

Google Scholar

[12] D.J. Naczynski, M.C. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C.M. Roth, R.E. Riman, P.V. Moghe, Rare-earth-doped biological composites as in vivo shortwave infrared reporters, Nat. Commun. 2199 (2013).

DOI: 10.1038/ncomms3199

Google Scholar

[13] L.M. Maestro, E. Camarillo, J.A. Sánchez-Gil, R. Rodríguez-Oliveros, J. Ramiro-Bargueño, A.J. Caamaño, F. Jaque, J.G. Solé, D. Jaque, Gold nanorods for optimized photothermal therapy: the influence of irradiating in the first and second biological windows, RSC Adv. 4 (2014).

DOI: 10.1039/c4ra08956a

Google Scholar

[14] A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm, J. Phys. D: Appl. Phys. 38 (2005) 2543.

DOI: 10.1088/0022-3727/38/15/004

Google Scholar

[15] X. Ding, C.H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, J. Jiang, Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window, J. Am. Chem. Soc. 136 (2014).

DOI: 10.1021/ja508641z

Google Scholar

[16] M.F. Tsai, S.H. Chang, F.Y. Cheng, V. Shanmugam, Y.S. Cheng, C.H. Su, C.S. Yeh, Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy, ACS Nano 7 (2013) 5330-5342.

DOI: 10.1021/nn401187c

Google Scholar

[17] C. Guo, H. Yu, B. Feng, W. Gao, M. Yan, Z. Zhang, Y. Li, S. Li, Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent, Biomaterials 52 (2015) 407-416.

DOI: 10.1016/j.biomaterials.2015.02.054

Google Scholar

[18] X. Huang, S. Neretina, M.A. EI-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications, Adv. Mater. 21 (2009) 4880-4910.

DOI: 10.1002/adma.200802789

Google Scholar

[19] E.B. Dickerson, E.C. Dreaden, X.H. Huang, I.H. El-Sayed, H. Chu, S. Pushpanketh, J.F. McDonald, M.A. EI-Sayed, Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer Lett. 269 (2008).

DOI: 10.1016/j.canlet.2008.04.026

Google Scholar

[20] E. Yasun, C. Li, I. Barut, D. Janvier, L. Qiu, C. Cui, W. Tan, BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods, Nanoscale 7 (2015) 10240-10248.

DOI: 10.1039/c5nr01704a

Google Scholar

[21] L. Wang, Y. Liu, W. Li, X. Jiang, Y. Ji, X. Wu, L. Xu, Y. Qiu, K. Zhao, T. Wei, Y. Li, Y. Zhao, C. Chen, Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy, Nano Lett. 11 (2011) 772-780.

DOI: 10.1021/nl103992v

Google Scholar

[22] H. Huang, J. -H. Wang, W. Jin, P. Li, M. Chen, H. -H. Xie, X. -F. Yu, H. Wang, Z. Dai, X. Xiao, P.K. Chu, Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance, Small 10 (2014).

DOI: 10.1002/smll.201400860

Google Scholar

[23] W.Q. Li, C.Y. Sun, F. Wang, Y.C. Wang, Y.W. Zhai, M. Liang, W. Liu, Z. Liu, J. Wang, F. Sun, Achieving a new controllable male contraception by the photothermal effect of gold nanorods, Nano Lett. 13 (2013) 2477-2484.

DOI: 10.1021/nl400536d

Google Scholar

[24] J. -H. Wang, H. Huang, D. -Q. Zhang, M. Chen, Y. -F. Zhang, X. -F. Yu, L. Zhou, Q. -Q. Wang, Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon and fluorescence, Nano Res. (2015) DOI: 10. 1007/s12274-015-0761-7.

DOI: 10.1007/s12274-015-0761-7

Google Scholar

[25] P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, J. Phys. Chem. B 110 (2006).

DOI: 10.1021/jp057170o

Google Scholar

[26] J. -H. Wang, B. Wang, Q. Liu, Q. Li, H. Huang, L. Song, T. -Y. Sun, H. Wang, X. -F. Yu, C. Li, P.K. Chu, Bimodal optical diagnostics of oral cancer based on rose bengal conjugated gold nanorod platform, Biomaterials 34 (2013) 4274-4283.

DOI: 10.1016/j.biomaterials.2013.02.012

Google Scholar

[27] Y. Xu, J. Wang, X. Li, Y. Liu, L. Dai, X. Wu, C. Chen., Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia, Biomaterials 35 (2014) 4667-4677.

DOI: 10.1016/j.biomaterials.2014.02.035

Google Scholar

[28] B. Wang, J. -H. Wang, Q. Liu, H. Huang, M. Chen, K. Li, X. -F. Yu, P.K. Chu, Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies, Biomaterials 35 (2014) 1954-(1966).

DOI: 10.1016/j.biomaterials.2013.11.066

Google Scholar

[29] R. Mooney, L. Roma, D. Zhao, D.V. Haute, E. Garcia, S.U. Kim, A.J. Annala, K.S. Aboody, J.M. Berlin, Neural stem cell-mediated delivery of gold nanorods improves photothermal therapy, ACS Nano 8 (2014) 12450-12460.

DOI: 10.1021/nn505147w

Google Scholar

[30] X. -M. Zhu, C. Fang, H. Jia, Y. Huang, C.H. Cheng, C. -H. Ko, Z. Chen, J. Wang, Y. -X. J. Wang, Cellular uptake behavior, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings, Nanoscale 6 (2014) 11462-11472.

DOI: 10.1039/c4nr03865g

Google Scholar

[31] X. Ye, C. Zheng, J. Chen, Y. Gao, C.B. Murray, Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods, Nano Lett. 13 (2013) 765-771.

DOI: 10.1021/nl304478h

Google Scholar

[32] L. Feng, X. Wu, L. Ren, Y. Xiang, W. He, K. Zhang, W. Zhou and S. Xie, Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth, Chem. -Eur. J. 14 (2008) 9764-9771.

DOI: 10.1002/chem.200800544

Google Scholar

[33] Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, C. Chen, Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods, Biomaterials 31 (2010) 7606-7619.

DOI: 10.1016/j.biomaterials.2010.06.051

Google Scholar

[34] Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang, Gold nanorods:  electrochemical synthesis and optical properties, J. Phys. Chem. B 101 (1997) 6661-6664.

DOI: 10.1021/jp971656q

Google Scholar

[35] N.R. Jana, L. Gearheart, C.J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater. 13 (2001) 1389-1393.

DOI: 10.1002/1521-4095(200109)13:18<1389::aid-adma1389>3.0.co;2-f

Google Scholar

[36] B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater. 15 (2003) 1957-(1962).

DOI: 10.1021/cm020732l

Google Scholar

[37] D.K. Roper, W. Ahn, M. Hoepfner, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles, J. Phys. Chem. C. 111 (2007) 3636-3641.

DOI: 10.1021/jp064341w

Google Scholar