Preparation of Starch Nanoparticles via High-Energy Ball Milling

Article Preview

Abstract:

Nano-sized starch particles were prepared from potato starch via high-energy ball milling, which is a purely physical method. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and viscometer were used to analyze the morphology and characteristics of the as-prepared nanoparticles. Spherical particles with an average size of approximately 120 nm were obtained after grinding the samples for 90 min, and the particles were free from any contamination. The particle surface was rough with a plush-like feature, and the adsorption ability was six times higher than that of native starch. Thus, the nano-sized starch particles can be used as a good embedding medium in biomedical and chemical materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-179

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kreuter, Nanoparticle–based dmg delivery systems, J. Control. Release. 16 (1991) 169–176.

DOI: 10.1016/0168-3659(91)90040-k

Google Scholar

[2] W. Thielemans, M.N. Belgacem, A. Dufresne, Starch nanocrystals with large chain surface modifications, Langmuir. 22 (2006) 4804–4810.

DOI: 10.1021/la053394m

Google Scholar

[3] K. Eleana, G. Costas. Biliaderis, Physical properties of starch nanocrystal–reinforced pullulan films, Carbohydr. Polym. 68 (2007) 146–158.

DOI: 10.1016/j.carbpol.2006.07.021

Google Scholar

[4] V. Lenaerts, I. Moussa, Y. Dumoulin, F. Mebsout, F. Chouinard, P. Szabo, M.A. Mateescu, L. Cartilier, R. Marchessault, Cross–linked high amylose starch for controlled release of drugs: recent advances, J. Control. Release. 53 (1998) 225–234.

DOI: 10.1016/s0168-3659(97)00256-3

Google Scholar

[5] H. Angellier, S. Molina–Boisseau, M.N. Belgacem, A. Dufresne, Surface chemical modification of waxy maize starch nanocrystals, Langmuir. 21 (2005) 2425–2433.

DOI: 10.1021/la047530j

Google Scholar

[6] X. Suyao, T. Chunyi,L. Xuanming, Preparation of folate–conjugated starch nanoparticles and its application to tumor–targeted drug delivery vector, Chinese Sci. Bull. 51 (2006) 1693–1697.

DOI: 10.1007/s11434-006-2039-7

Google Scholar

[7] T.L. Levien, D. E Baker, Reviews of levomethadyl acetate and degradable starch microspheres, Hosp Pharm, 28 (1993), 1214–1222.

Google Scholar

[8] M.J. Santander–Ortega, T. Stauner, B. Loretz, J.L. Ortega–Vinuesa, D. Bastos–Gonzalez, G. Wenz, U.F. Schaefer, C.M. Lehr, Nanoparticles made from novel starch derivatives for transdermal drug delivery, J. Control. Release. 141 (2010) 85–92.

DOI: 10.1016/j.jconrel.2009.08.012

Google Scholar

[9] W.L. Kerr, C.D.W. Ward, K.H. McWatters, A.V.A. Resurreccion, Milling and particle size of cowpea flour and snack chip quality, Food Res. Int. 34 (2001) 39–45.

DOI: 10.1016/s0963-9969(00)00126-5

Google Scholar

[10] R. Wongsagona, S. Shobsngobb, S. Varavinita, Preparation and physicochemical properties of dialdehyde tapioca starch, Starch–Stärke. 57 (2005) 166–172.

DOI: 10.1002/star.200400299

Google Scholar

[11] R. Hoover, Acid–Treated starches, Food Rev. Int. 16 (2000) 369–392.

Google Scholar

[12] J.Y. Kim, D.J. Park, S.T. Lim, Fragmentation of Waxy Rice Starch Granules by Enzymatic Hydrolysis, Cereal Chem. 85 (2008) 182–187.

DOI: 10.1094/cchem-85-2-0182

Google Scholar

[13] G. Zhou, Z. Luo, X. Fu, Preparation and characterization of starch nanoparticles in ionic liquid–in–oil microemulsions system, Ind. Crop. Prod. 52 (2014) 105–110.

DOI: 10.1016/j.indcrop.2013.10.019

Google Scholar

[14] Q. Sun, M. Gong, Y. Li, L. Xiong, On the validity of the Boltzmann–BGK model through relaxation evaluation, Acta Mech. Sinica. 111 (2014) 133–143.

DOI: 10.1007/s10409-014-0017-x

Google Scholar

[15] A.P. Mathew, A. Dufresne, Morphological Investigation of Nanocomposites from Sorbitol Plasticized Starch and Tunicin Whiskers, Biomacromolecules 3 (2002) 609–617.

DOI: 10.1021/bm0101769

Google Scholar

[16] S. Chakraborty, B. Sahoo, I. Teraoka, Solution properties of starch nanoparticles in water and DMSO as studied by dynamic light scattering, Carbohydr. Polym. 60 (2007) 475–481.

DOI: 10.1016/j.carbpol.2005.03.011

Google Scholar

[17] L. H.Pulkki, Particle size in relation to flour characteristics and starch cells of wheat, Cereal Chem. 15 (1938) 749–765.

Google Scholar

[18] S. Bel Haaj, A. Magnin, C. Pétrier, S. Boufi, Starch nanoparticles formation via high power ultrasonication, Carbohydr. Polym. 92 (2013) 1625–1632.

DOI: 10.1016/j.carbpol.2012.11.022

Google Scholar

[19] F. Giezen, R., Jongboom, K., Gotlieb, A. Boersma, Biopolymer nanoparticles. U.S. Patent WO 00/69916, January 25, (2000).

Google Scholar

[20] M. Lamanna, N.J. Morales, N.L. García, S. Goyanes, Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler, Carbohydr. Polym. 97 (2013) 90–97.

DOI: 10.1016/j.carbpol.2013.04.081

Google Scholar

[21] D. Liu, Q. Wu, H. Chen, P.R. Chang, Transitional properties of starch colloid with particle size reduction from micro– to nanometer, J. Colloid Interface Sci. 339 (2009) 117–124.

DOI: 10.1016/j.jcis.2009.07.035

Google Scholar

[22] W.L. Kerr, C.D.W. Ward and K.H. McWatters.Milling and particle size of cowpea flour and snack chip quality, Food Res. Int. 34 (2001) 39–45.

DOI: 10.1016/s0963-9969(00)00126-5

Google Scholar

[23] L. Vertuccio, G. Gorrasi, A. Sorrentino and V. Vittoria, Nano clay reinforced PCL/starch blends obtained by high energy ball milling, Carbohydr. Polym. 75 (2009) 172–179.

DOI: 10.1016/j.carbpol.2008.07.020

Google Scholar

[24] X. Ma, R. Jian, P.R. Chang, J. Yu, Fabrication and Characterization of Citric Acid–Modified Starch Nanoparticles/Plasticized–Starch Composites, Biomacromolecules. 9 (2008) 3314–3320.

DOI: 10.1021/bm800987c

Google Scholar

[25] D. LeCorre, J. Bras, A. Dufresne, Starch Nanoparticles: A Review, Biomacromolecules. 11 (2010) 1139–1153.

Google Scholar

[26] Z.Q. Huang, J.P. Lu, X.H. Li, Z.F. Tong, Effect of mechanical activation on physico–chemical properties and structure of cassava starch, Carbohydr. Polym. 68 (2007) 128–135.

DOI: 10.1016/j.carbpol.2006.07.017

Google Scholar

[27] T.Y. Liu, Y. Ma, S.F. Yu, J. Shi, S. Xue, The effect of ball milling treatment on structure and porosity of maize starch granule, Innov. Food Sci. Emerg. 12 (2011) 586–593.

DOI: 10.1016/j.ifset.2011.06.009

Google Scholar

[28] H.Y. Kim, S.S. Park, S.T. Lim, Preparation, characterization and utilization of starch nanoparticles, Colloid. Surface. B. 126 (2015) 607–620.

Google Scholar